MATH 304
 Linear Algebra

Lecture 40:
Review for the final exam.

Topics for the final exam: Part I

Elementary linear algebra (Leon 1.1-1.5, 2.1-2.2)

- Systems of linear equations: elementary operations, Gaussian elimination, back substitution.
- Matrix of coefficients and augmented matrix. Elementary row operations, row echelon form and reduced row echelon form.
- Matrix algebra. Inverse matrix.
- Determinants: explicit formulas for 2×2 and 3×3 matrices, row and column expansions, elementary row and column operations.

Topics for the final exam: Part II

Abstract linear algebra (Leon 3.1-3.6, 4.1-4.3)

- Vector spaces (vectors, matrices, polynomials, functional spaces).
- Subspaces. Nullspace, column space, and row space of a matrix.
- Span, spanning set. Linear independence.
- Bases and dimension.
- Rank and nullity of a matrix.
- Coordinates relative to a basis.
- Change of basis, transition matrix.
- Linear transformations.
- Matrix transformations.
- Matrix of a linear mapping.
- Similarity of matrices.

Topics for the final exam: Parts III-IV

Advanced linear algebra (Leon 5.1-5.7, 6.1-6.3)

- Euclidean structure in \mathbb{R}^{n} (length, angle, dot product)
- Inner products and norms
- Orthogonal complement
- Least squares problems
- The Gram-Schmidt orthogonalization process
- Orthogonal polynomials
- Eigenvalues, eigenvectors, eigenspaces
- Characteristic polynomial
- Bases of eigenvectors, diagonalization
- Matrix exponentials
- Complex eigenvalues and eigenvectors
- Orthogonal matrices
- Rotations in space

Bases of eigenvectors

Let A be an $n \times n$ matrix with real entries.

- A has n distinct real eigenvalues \Longrightarrow a basis for \mathbb{R}^{n} formed by eigenvectors of A
- A has complex eigenvalues \Longrightarrow no basis for \mathbb{R}^{n} formed by eigenvectors of A
- A has n distinct complex eigenvalues \Longrightarrow a basis for \mathbb{C}^{n} formed by eigenvectors of A
- A has multiple eigenvalues \Longrightarrow further information is needed
- an orthonormal basis for \mathbb{R}^{n} formed by eigenvectors of A
$\Longleftrightarrow A$ is symmetric: $A^{T}=A$

Problem. For each of the following 2×2 matrices determine whether it allows
(a) a basis of eigenvectors for \mathbb{R}^{2},
(b) a basis of eigenvectors for \mathbb{C}^{2},
(c) an orthonormal basis of eigenvectors for \mathbb{R}^{2}.

$$
\begin{array}{ll}
A=\left(\begin{array}{ll}
1 & 0 \\
0 & 4
\end{array}\right) & (\mathrm{a}),(\mathrm{b}),(\mathrm{c}): \text { yes } \\
B=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) & (\mathrm{a}),(\mathrm{b}),(\mathrm{c}): \text { no }
\end{array}
$$

Problem. For each of the following 2×2 matrices determine whether it allows
(a) a basis of eigenvectors for \mathbb{R}^{2},
(b) a basis of eigenvectors for \mathbb{C}^{2},
(c) an orthonormal basis of eigenvectors for \mathbb{R}^{2}.

$$
\begin{aligned}
& C=\left(\begin{array}{ll}
2 & 3 \\
1 & 4
\end{array}\right) \\
& \text { (a),(b): yes (c): no } \\
& D=\left(\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right) \\
& \text { (b): yes } \\
& \text { (a),(c): no }
\end{aligned}
$$

Problem. Let V be the vector space spanned by functions $f_{1}(x)=x \sin x, f_{2}(x)=x \cos x$,
$f_{3}(x)=\sin x$, and $f_{4}(x)=\cos x$.
Consider the linear operator $D: V \rightarrow V$, $D=d / d x$.
(a) Find the matrix A of the operator D relative to the basis $f_{1}, f_{2}, f_{3}, f_{4}$.
(b) Find the eigenvalues of A.
(c) Is the matrix A diagonalizable in \mathbb{R}^{4} (in $\left.\mathbb{C}^{4}\right)$?
A is a 4×4 matrix whose columns are coordinates of functions $D f_{i}=f_{i}^{\prime}$ relative to the basis $f_{1}, f_{2}, f_{3}, f_{4}$.
$f_{1}^{\prime}(x)=(x \sin x)^{\prime}=x \cos x+\sin x=f_{2}(x)+f_{3}(x)$,
$f_{2}^{\prime}(x)=(x \cos x)^{\prime}=-x \sin x+\cos x$

$$
=-f_{1}(x)+f_{4}(x)
$$

$f_{3}^{\prime}(x)=(\sin x)^{\prime}=\cos x=f_{4}(x)$,
$f_{4}^{\prime}(x)=(\cos x)^{\prime}=-\sin x=-f_{3}(x)$.
Thus $A=\left(\begin{array}{rrrr}0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & -1 \\ 0 & 1 & 1 & 0\end{array}\right)$.

Eigenvalues of A are roots of its characteristic polynomial

$$
\operatorname{det}(A-\lambda I)=\left|\begin{array}{rrrr}
-\lambda & -1 & 0 & 0 \\
1 & -\lambda & 0 & 0 \\
1 & 0 & -\lambda & -1 \\
0 & 1 & 1 & -\lambda
\end{array}\right|
$$

Expand the determinant by the 1st row:

$$
\begin{aligned}
& \operatorname{det}(A-\lambda I)=-\lambda\left|\begin{array}{rrr}
-\lambda & 0 & 0 \\
0 & -\lambda & -1 \\
1 & 1 & -\lambda
\end{array}\right|-(-1)\left|\begin{array}{rrr}
1 & 0 & 0 \\
1 & -\lambda & -1 \\
0 & 1 & -\lambda
\end{array}\right| \\
& \quad=\lambda^{2}\left(\lambda^{2}+1\right)+\left(\lambda^{2}+1\right)=\left(\lambda^{2}+1\right)^{2} .
\end{aligned}
$$

The eigenvalues are i and $-i$, both of multiplicity 2 .

Complex eigenvalues $\Longrightarrow A$ is not diagonalizable in \mathbb{R}^{4}
If A is diagonalizable in \mathbb{C}^{4} then $A=U X U^{-1}$, where U is an invertible matrix with complex entries and

$$
X=\left(\begin{array}{rrrr}
i & 0 & 0 & 0 \\
0 & i & 0 & 0 \\
0 & 0 & -i & 0 \\
0 & 0 & 0 & -i
\end{array}\right) .
$$

This would imply that $A^{2}=U X^{2} U^{-1}$. But $X^{2}=-I$ so that $A^{2}=U(-I) U^{-1}=-I$.

$$
A^{2}=\left(\begin{array}{rrrr}
0 & -1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
1 & 0 & 0 & -1 \\
0 & 1 & 1 & 0
\end{array}\right)^{2}=\left(\begin{array}{rrrr}
-1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & -2 & -1 & 0 \\
2 & 0 & 0 & -1
\end{array}\right) .
$$

Since $A^{2} \neq-l$, the matrix A is not diagonalizable in \mathbb{C}^{4}.

Problem. Let R denote a linear operator on \mathbb{R}^{3} that acts on vectors from the standard basis as follows: $R\left(\mathbf{e}_{1}\right)=\mathbf{e}_{2}$, $R\left(\mathbf{e}_{2}\right)=\mathbf{e}_{3}, R\left(\mathbf{e}_{3}\right)=-\mathbf{e}_{1}$. Is R a rotation about an axis? Is R a reflection in a plane?

The matrix of R relative to the standard basis is

$$
M=\left(\begin{array}{rrr}
0 & 0 & -1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right) .
$$

M is orthogonal since columns form an orthonormal basis for \mathbb{R}^{3}. According to the classification of the 3×3 orthogonal matrices, R is either a rotation about an axis, or a reflection in a plane, or the composition of a rotation about an axis with the reflection in the plane orthogonal to the axis.
R is not a rotation since $\operatorname{det} M \neq 1$.
R is not a reflection since $M^{2} \neq 1$.

Problem. Consider a linear operator $L: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ defined by $L(\mathbf{v})=\mathbf{v}_{0} \times \mathbf{v}$, where
$\mathbf{v}_{0}=(3 / 5,0,-4 / 5)$.
(a) Find the matrix B of the operator L.
(b) Find the range and kernel of L.
(c) Find the eigenvalues of L.
(d) Find the matrix of the operator L^{2011} (L applied 2011 times).
$L(\mathbf{v})=\mathbf{v}_{0} \times \mathbf{v}, \quad \mathbf{v}_{0}=(3 / 5,0,-4 / 5)$.
Let $\mathbf{v}=(x, y, z)=x \mathbf{e}_{1}+y \mathbf{e}_{2}+z \mathbf{e}_{3}$. Then

$$
\begin{aligned}
& L(\mathbf{v})=\mathbf{v}_{0} \times \mathbf{v}=\left|\begin{array}{ccc}
\mathbf{e}_{1} & \mathbf{e}_{2} & \mathbf{e}_{3} \\
3 / 5 & 0 & -4 / 5 \\
x & y & z
\end{array}\right| \\
& \quad=\frac{4}{5} y \mathbf{e}_{1}-\left(\frac{4}{5} x+\frac{3}{5} z\right) \mathbf{e}_{2}+\frac{3}{5} y \mathbf{e}_{3} .
\end{aligned}
$$

In particular, $L\left(\mathbf{e}_{1}\right)=-\frac{4}{5} \mathbf{e}_{2}, \quad L\left(\mathbf{e}_{2}\right)=\frac{4}{5} \mathbf{e}_{1}+\frac{3}{5} \mathbf{e}_{3}$, $L\left(\mathbf{e}_{3}\right)=-\frac{3}{5} \mathbf{e}_{2}$.
Therefore $B=\left(\begin{array}{ccc}0 & 4 / 5 & 0 \\ -4 / 5 & 0 & -3 / 5 \\ 0 & 3 / 5 & 0\end{array}\right)$.
$B=\left(\begin{array}{ccc}0 & 4 / 5 & 0 \\ -4 / 5 & 0 & -3 / 5 \\ 0 & 3 / 5 & 0\end{array}\right)$.
The range of the operator L is spanned by columns of the matrix B. It follows that Range (L) is the plane spanned by $\mathbf{v}_{1}=(0,1,0)$ and $\mathbf{v}_{2}=(4,0,3)$.
The kernel of L is the nullspace of the matrix B, i.e., the solution set for the equation $B \mathbf{x}=\mathbf{0}$.

$$
\begin{gathered}
\left(\begin{array}{ccc}
0 & 4 / 5 & 0 \\
-4 / 5 & 0 & -3 / 5 \\
0 & 3 / 5 & 0
\end{array}\right) \rightarrow\left(\begin{array}{ccc}
1 & 0 & 3 / 4 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right) \\
\Longrightarrow x+\frac{3}{4} z=y=0 \Longrightarrow x=t(-3 / 4,0,1)
\end{gathered}
$$

Alternatively, the kernel of L is the set of vectors
$\mathbf{v} \in \mathbb{R}^{3}$ such that $L(\mathbf{v})=\mathbf{v}_{0} \times \mathbf{v}=\mathbf{0}$.
It follows that this is the line spanned by
$\mathbf{v}_{0}=(3 / 5,0,-4 / 5)$.
Characteristic polynomial of the matrix B :

$$
\begin{gathered}
\operatorname{det}(B-\lambda I)=\left|\begin{array}{ccc}
-\lambda & 4 / 5 & 0 \\
-4 / 5 & -\lambda & -3 / 5 \\
0 & 3 / 5 & -\lambda
\end{array}\right| \\
=-\lambda^{3}-(3 / 5)^{2} \lambda-(4 / 5)^{2} \lambda=-\lambda^{3}-\lambda=-\lambda\left(\lambda^{2}+1\right) .
\end{gathered}
$$

The eigenvalues are $0, i$, and $-i$.

The matrix of the operator L^{2011} is B^{2011}.
Since the matrix B has eigenvalues $0, i$, and $-i$, it is diagonalizable in \mathbb{C}^{3}. Namely, $B=U D U^{-1}$, where U is an invertible matrix with complex entries and

$$
D=\left(\begin{array}{rrr}
0 & 0 & 0 \\
0 & i & 0 \\
0 & 0 & -i
\end{array}\right)
$$

Then $B^{2011}=U D^{2011} U^{-1}$. We have that $D^{2011}=$ $=\operatorname{diag}\left(0, i^{2011},(-i)^{2011}\right)=\operatorname{diag}(0,-i, i)=-D$. Hence

$$
B^{2011}=U(-D) U^{-1}=-B=\left(\begin{array}{ccc}
0 & -4 / 5 & 0 \\
4 / 5 & 0 & 3 / 5 \\
0 & -3 / 5 & 0
\end{array}\right)
$$

