MATH 304
 Linear Algebra

Lecture 4:
Applications of systems of linear equations.

Applications of systems of linear equations

Problem 1. Find the point of intersection of the lines $x-y=-2$ and $2 x+3 y=6$ in \mathbb{R}^{2}.

$$
\left\{\begin{array}{l}
x-y=-2 \\
2 x+3 y=6
\end{array}\right.
$$

Problem 2. Find the point of intersection of the planes $x-y=2,2 x-y-z=3$, and $x+y+z=6$ in \mathbb{R}^{3}.

$$
\left\{\begin{array}{l}
x-y=2 \\
2 x-y-z=3 \\
x+y+z=6
\end{array}\right.
$$

Method of undetermined coefficients often involves solving systems of linear equations.

Problem 3. Find a quadratic polynomial $p(x)$ such that $p(1)=4, p(2)=3$, and $p(3)=4$.

Suppose that $p(x)=a x^{2}+b x+c$. Then $p(1)=a+b+c, p(2)=4 a+2 b+c$, $p(3)=9 a+3 b+c$.

$$
\left\{\begin{array}{l}
a+b+c=4 \\
4 a+2 b+c=3 \\
9 a+3 b+c=4
\end{array}\right.
$$

Method of undetermined coefficients often involves solving systems of linear equations.

Problem 3. Find a quadratic polynomial $p(x)$
such that $p(1)=4, p(2)=3$, and $p(3)=4$.
Alternative choice of coefficients: $p(x)=\tilde{a}+\tilde{b} x+\tilde{c} x^{2}$.
Then $p(1)=\tilde{a}+\tilde{b}+\tilde{c}, \quad p(2)=\tilde{a}+2 \tilde{b}+4 \tilde{c}$, $p(3)=\tilde{a}+3 \tilde{b}+9 \tilde{c}$.

$$
\left\{\begin{array}{l}
\tilde{a}+\tilde{b}+\tilde{c}=4 \\
\tilde{a}+2 \tilde{b}+4 \tilde{c}=3 \\
\tilde{a}+3 \tilde{b}+9 \tilde{c}=4
\end{array}\right.
$$

Problem 4. Evaluate $\int_{0}^{1} \frac{x(x-3)}{(x-1)^{2}(x+2)} d x$
To evaluate the integral, we need to decompose the rational function $R(x)=\frac{x(x-3)}{(x-1)^{2}(x+2)}$ into the sum of simple fractions:

$$
\begin{aligned}
& R(x)=\frac{a}{x-1}+\frac{b}{(x-1)^{2}}+\frac{c}{x+2} \\
&=\frac{a(x-1)(x+2)+b(x+2)+c(x-1)^{2}}{(x-1)^{2}(x+2)} \\
&=\frac{(a+c) x^{2}+(a+b-2 c) x+(-2 a+2 b+c)}{(x-1)^{2}(x+2)} . \\
& \qquad\left\{\begin{array}{l}
a+c=1 \\
a+b-2 c=-3 \\
-2 a+2 b+c=0
\end{array}\right.
\end{aligned}
$$

Traffic flow

Problem. Determine the amount of traffic between each of the four intersections.

$$
x_{1}=?, \quad x_{2}=?, \quad x_{3}=?, \quad x_{4}=?
$$

At each intersection, the incoming traffic has to match the outgoing traffic.

Intersection $A: \quad x_{4}+610=x_{1}+450$
Intersection $B: \quad x_{1}+400=x_{2}+640$
Intersection $C: \quad x_{2}+600=x_{3}$
Intersection D: $\quad x_{3}=x_{4}+520$

$$
\left\{\begin{array}{l}
x_{4}+610=x_{1}+450 \\
x_{1}+400=x_{2}+640 \\
x_{2}+600=x_{3} \\
x_{3}=x_{4}+520
\end{array}\right.
$$

$$
\Longleftrightarrow\left\{\begin{array}{l}
-x_{1}+x_{4}=-160 \\
x_{1}-x_{2}=240 \\
x_{2}-x_{3}=-600 \\
x_{3}-x_{4}=520
\end{array}\right.
$$

Electrical network

Problem. Determine the amount of current in each branch of the network.

$$
i_{1}=?, \quad i_{2}=?, \quad i_{3}=?
$$

Kirchhof's law \#1 (junction rule): at every node the sum of the incoming currents equals the sum of the outgoing currents.

Node A : $\quad i_{1}=i_{2}+i_{3}$
Node $B: \quad i_{2}+i_{3}=i_{1}$

Electrical network

Kirchhof's law \#2 (loop rule): around every loop the algebraic sum of all voltages is zero.

Ohm's law: for every resistor the voltage drop E, the current i, and the resistance R satisfy $E=i R$.

$$
\begin{aligned}
\text { Top loop: } & 9-i_{2}-4 i_{1}=0 \\
\text { Bottom loop: } & 4-2 i_{3}+i_{2}-3 i_{3}=0 \\
\text { Big loop: } & 4-2 i_{3}-4 i_{1}+9-3 i_{3}=0
\end{aligned}
$$

Remark. The 3rd equation is the sum of the first two equations.

$$
\begin{aligned}
& \left\{\begin{array}{l}
i_{1}=i_{2}+i_{3} \\
9-i_{2}-4 i_{1}=0 \\
4-2 i_{3}+i_{2}-3 i_{3}=0
\end{array}\right. \\
& \Longleftrightarrow\left\{\begin{array}{l}
i_{1}-i_{2}-i_{3}=0 \\
4 i_{1}+i_{2}=9 \\
-i_{2}+5 i_{3}=4
\end{array}\right.
\end{aligned}
$$

Stress analysis of a truss

Problem. Assume that the leftmost and rightmost joints are fixed. Find the forces acting on each member of the truss.

Truss bridge

Let $\left|f_{k}\right|$ be the magnitude of the force in the k th member. $f_{k}>0$ if the member is under tension. $f_{k}<0$ if the member is under compression.

Static equilibrium at the joint A :

horizontal projection: $\quad-\frac{1}{\sqrt{2}} f_{1}+f_{4}+\frac{1}{\sqrt{2}} f_{5}=0$ vertical projection: $\quad-\frac{1}{\sqrt{2}} f_{1}-f_{3}-\frac{1}{\sqrt{2}} f_{5}=0$

Static equilibrium at the joint B : horizontal projection: $\quad-f_{4}+f_{8}=0$ vertical projection: $\quad-f_{7}=0$

Static equilibrium at the joint C : horizontal projection: $\quad-f_{8}-\frac{1}{\sqrt{2}} f_{9}+\frac{1}{\sqrt{2}} f_{12}=0$ vertical projection: $\quad-\frac{1}{\sqrt{2}} f_{9}-f_{11}-\frac{1}{\sqrt{2}} f_{12}=0$

Static equilibrium at the joint D :

horizontal projection: $\quad-f_{2}+f_{6}=0$
vertical projection: $\quad f_{3}-10=0$
Static equilibrium at the joint E:
horizontal projection: $\quad-\frac{1}{\sqrt{2}} f_{5}-f_{6}+\frac{1}{\sqrt{2}} f_{9}+f_{10}=0$
vertical projection: $\frac{1}{\sqrt{2}} f_{5}+f_{7}+\frac{1}{\sqrt{2}} f_{9}-15=0$
Static equilibrium at the joint F :
horizontal projection: $\quad-f_{10}+f_{13}=0$
vertical projection: $\quad f_{11}-20=0$

$$
\begin{aligned}
& -\frac{1}{\sqrt{2}} f_{1}+f_{4}+\frac{1}{\sqrt{2}} f_{5}=0 \\
& -\frac{1}{\sqrt{2}} f_{1}-f_{3}-\frac{1}{\sqrt{2}} f_{5}=0 \\
& -f_{4}+f_{8}=0 \\
& -f_{7}=0 \\
& -f_{8}-\frac{1}{\sqrt{2}} f_{9}+\frac{1}{\sqrt{2}} f_{12}=0 \\
& -\frac{1}{\sqrt{2}} f_{9}-f_{11}-\frac{1}{\sqrt{2}} f_{12}=0 \\
& -f_{2}+f_{6}=0 \\
& f_{3}=10 \\
& -\frac{1}{\sqrt{2}} f_{5}-f_{6}+\frac{1}{\sqrt{2}} f_{9}+f_{10}=0 \\
& \frac{1}{\sqrt{2}} f_{5}+f_{7}+\frac{1}{\sqrt{2}} f_{9}=15 \\
& -f_{10}+f_{13}=0 \\
& f_{11}=20
\end{aligned}
$$

