MATH 304 Linear Algebra Lecture 13: Span. Spanning set.

Subspaces of vector spaces

Definition. A vector space V_0 is a **subspace** of a vector space V if $V_0 \subset V$ and the linear operations on V_0 agree with the linear operations on V.

Proposition A subset S of a vector space V is a subspace of V if and only if S is **nonempty** and **closed under linear operations**, i.e.,

$$\mathbf{x}, \mathbf{y} \in S \implies \mathbf{x} + \mathbf{y} \in S,$$

 $\mathbf{x} \in S \implies r\mathbf{x} \in S \text{ for all } r \in \mathbb{R}.$

Remarks. The zero vector in a subspace is the same as the zero vector in V. Also, the subtraction in a subspace agrees with that in V.

Examples of subspaces

- $F(\mathbb{R})$: all functions $f : \mathbb{R} \to \mathbb{R}$
- $C(\mathbb{R})$: all continuous functions $f : \mathbb{R} \to \mathbb{R}$ $C(\mathbb{R})$ is a subspace of $F(\mathbb{R})$.
- \mathcal{P} : polynomials $p(x) = a_0 + a_1x + \cdots + a_{n-1}x^{n-1}$
- \mathcal{P}_n : polynomials of degree less than n
- \mathcal{P}_n is a subspace of \mathcal{P} .
 - Any vector space V
 - $\{\mathbf{0}\}$, where **0** is the zero vector in V

The trivial space $\{\mathbf{0}\}$ is a subspace of V.

System of linear equations:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \dots \dots \dots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \end{cases}$$

Any solution (x_1, x_2, \ldots, x_n) is an element of \mathbb{R}^n .

Theorem The solution set of the system is a subspace of \mathbb{R}^n if and only if all $b_i = 0$.

Examples of subspaces of $\mathcal{M}_{2,2}(\mathbb{R})$: $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$

- diagonal matrices: b = c = 0
- upper triangular matrices: c = 0
- lower triangular matrices: b = 0
- symmetric matrices $(A^T = A)$: b = c
- anti-symmetric matrices $(A^T = -A)$: a = d = 0 and c = -b
- matrices with zero trace: a + d = 0(trace = the sum of diagonal entries)

Let V be a vector space and $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n \in V$. Consider the set L of all linear combinations $r_1\mathbf{v}_1 + r_2\mathbf{v}_2 + \dots + r_n\mathbf{v}_n$, where $r_1, r_2, \dots, r_n \in \mathbb{R}$.

Theorem L is a subspace of V.

Proof: First of all, *L* is not empty. For example, $\mathbf{0} = 0\mathbf{v}_1 + 0\mathbf{v}_2 + \cdots + 0\mathbf{v}_n$ belongs to *L*.

The set L is closed under addition since

$$(r_1\mathbf{v}_1+r_2\mathbf{v}_2+\cdots+r_n\mathbf{v}_n)+(s_1\mathbf{v}_1+s_2\mathbf{v}_2+\cdots+s_n\mathbf{v}_n)=$$

= $(r_1+s_1)\mathbf{v}_1+(r_2+s_2)\mathbf{v}_2+\cdots+(r_n+s_n)\mathbf{v}_n.$

The set L is closed under scalar multiplication since

$$t(r_1\mathbf{v}_1+r_2\mathbf{v}_2+\cdots+r_n\mathbf{v}_n)=(tr_1)\mathbf{v}_1+(tr_2)\mathbf{v}_2+\cdots+(tr_n)\mathbf{v}_n.$$

Span: implicit definition

Let S be a subset of a vector space V.

Definition. The **span** of the set S, denoted Span(S), is the smallest subspace of V that contains S. That is,

- Span(S) is a subspace of V;
- for any subspace $W \subset V$ one has $S \subset W \implies \operatorname{Span}(S) \subset W.$

Remark. The span of any set $S \subset V$ is well defined (it is the intersection of all subspaces of V that contain S).

Span: effective description

Let S be a subset of a vector space V.

• If $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ then $\operatorname{Span}(S)$ is the set of all linear combinations $r_1\mathbf{v}_1 + r_2\mathbf{v}_2 + \dots + r_n\mathbf{v}_n$, where $r_1, r_2, \dots, r_n \in \mathbb{R}$.

• If S is an infinite set then Span(S) is the set of all linear combinations $r_1\mathbf{u}_1 + r_2\mathbf{u}_2 + \cdots + r_k\mathbf{u}_k$, where $\mathbf{u}_1, \mathbf{u}_2, \ldots, \mathbf{u}_k \in S$ and $r_1, r_2, \ldots, r_k \in \mathbb{R}$ $(k \ge 1)$.

• If S is the empty set then $\operatorname{Span}(S) = \{\mathbf{0}\}.$

Examples of subspaces of $\mathcal{M}_{2,2}(\mathbb{R})$:

• The span of $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ and $\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$ consists of all matrices of the form

$$a\begin{pmatrix}1&0\\0&0\end{pmatrix}+b\begin{pmatrix}0&0\\0&1\end{pmatrix}=\begin{pmatrix}a&0\\0&b\end{pmatrix}.$$

This is the subspace of diagonal matrices.

• The span of
$$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$
, $\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$, and $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$
consists of all matrices of the form
 $a \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + b \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} + c \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} a & c \\ c & b \end{pmatrix}$.

This is the subspace of symmetric matrices.

Examples of subspaces of $\mathcal{M}_{2,2}(\mathbb{R})$:

• The span of
$$\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$
 is the subspace of

anti-symmetric matrices.

• The span of
$$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$
, $\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$, and $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$

is the subspace of upper triangular matrices.

• The span of
$$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$
, $\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$, $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$
is the entire space $\mathcal{M}_{2,2}(\mathbb{R})$.

Spanning set

Definition. A subset S of a vector space V is called a **spanning set** for V if Span(S) = V. Examples. • Vectors $\mathbf{e}_1 = (1, 0, 0)$, $\mathbf{e}_2 = (0, 1, 0)$, and

 $\mathbf{e}_3 = (0, 0, 1)$ form a spanning set for \mathbb{R}^3 as $(x, y, z) = x\mathbf{e}_1 + y\mathbf{e}_2 + z\mathbf{e}_3.$

• Matrices $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$ form a spanning set for $\mathcal{M}_{2,2}(\mathbb{R})$ as

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} = a \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + b \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} + c \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} + d \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}.$$

Problem Let $v_1 = (1, 2, 0)$, $v_2 = (3, 1, 1)$, and w = (4, -7, 3). Determine whether w belongs to $\text{Span}(v_1, v_2)$.

We have to check if there exist $r_1, r_2 \in \mathbb{R}$ such that $\mathbf{w} = r_1\mathbf{v}_1 + r_2\mathbf{v}_2$. This vector equation is equivalent to a system of linear equations:

$$\begin{cases} 4 = r_1 + 3r_2 \\ -7 = 2r_1 + r_2 \\ 3 = 0r_1 + r_2 \end{cases} \iff \begin{cases} r_1 = -5 \\ r_2 = 3 \end{cases}$$

Thus $\mathbf{w} = -5\mathbf{v}_1 + 3\mathbf{v}_2$ is in $\operatorname{Span}(\mathbf{v}_1, \mathbf{v}_2)$.

Problem Let $\mathbf{v}_1 = (2,5)$ and $\mathbf{v}_2 = (1,3)$. Show that $\{\mathbf{v}_1, \mathbf{v}_2\}$ is a spanning set for \mathbb{R}^2 .

Take any vector $\mathbf{w} = (a, b) \in \mathbb{R}^2$. We have to check that there exist $r_1, r_2 \in \mathbb{R}$ such that

$$\mathbf{w} = r_1 \mathbf{v}_1 + r_2 \mathbf{v}_2 \iff \begin{cases} 2r_1 + r_2 = a\\ 5r_1 + 3r_2 = b \end{cases}$$

Coefficient matrix: $C = \begin{pmatrix} 2 & 1 \\ 5 & 3 \end{pmatrix}$. det $C = 1 \neq 0$.

Since the matrix *C* is invertible, the system has a unique solution for any *a* and *b*. Thus $\text{Span}(\mathbf{v}_1, \mathbf{v}_2) = \mathbb{R}^2$. **Problem** Let $\mathbf{v}_1 = (2,5)$ and $\mathbf{v}_2 = (1,3)$. Show that $\{\mathbf{v}_1, \mathbf{v}_2\}$ is a spanning set for \mathbb{R}^2 .

Alternative solution: First let us show that vectors $e_1 = (1,0)$ and $e_2 = (0,1)$ belong to $\text{Span}(v_1, v_2)$. $\mathbf{e}_1 = r_1 \mathbf{v}_1 + r_2 \mathbf{v}_2 \iff \begin{cases} 2r_1 + r_2 = 1\\ 5r_1 + 3r_2 = 0 \end{cases} \iff \begin{cases} r_1 = 3\\ r_2 = -5 \end{cases}$ $\mathbf{e}_2 = r_1 \mathbf{v}_1 + r_2 \mathbf{v}_2 \iff \begin{cases} 2r_1 + r_2 = 0\\ 5r_1 + 3r_2 = 1 \end{cases} \iff \begin{cases} r_1 = -1\\ r_2 = 2 \end{cases}$ Thus $\mathbf{e}_1 = 3\mathbf{v}_1 - 5\mathbf{v}_2$ and $\mathbf{e}_2 = -\mathbf{v}_1 + 2\mathbf{v}_2$. Then for any vector $\mathbf{w} = (a, b) \in \mathbb{R}^2$ we have

$$w = a\mathbf{e}_1 + b\mathbf{e}_2 = a(3\mathbf{v}_1 - 5\mathbf{v}_2) + b(-\mathbf{v}_1 + 2\mathbf{v}_2) = (3a - b)\mathbf{v}_1 + (-5a + 2b)\mathbf{v}_2.$$

Problem Let $\mathbf{v}_1 = (2,5)$ and $\mathbf{v}_2 = (1,3)$. Show that $\{\mathbf{v}_1, \mathbf{v}_2\}$ is a spanning set for \mathbb{R}^2 .

Remarks on the alternative solution: Notice that \mathbb{R}^2 is spanned by vectors $\mathbf{e}_1 = (1, 0)$ and $e_2 = (0, 1)$ since $(a, b) = ae_1 + be_2$. This is why we have checked that vectors \mathbf{e}_1 and \mathbf{e}_2 belong to $\text{Span}(\mathbf{v}_1, \mathbf{v}_2)$. Then $\mathbf{e}_1, \mathbf{e}_2 \in \operatorname{Span}(\mathbf{v}_1, \mathbf{v}_2) \implies \operatorname{Span}(\mathbf{e}_1, \mathbf{e}_2) \subset \operatorname{Span}(\mathbf{v}_1, \mathbf{v}_2)$ $\implies \mathbb{R}^2 \subset \operatorname{Span}(\mathbf{v}_1, \mathbf{v}_2) \implies \operatorname{Span}(\mathbf{v}_1, \mathbf{v}_2) = \mathbb{R}^2.$

In general, to show that $\operatorname{Span}(S_1) = \operatorname{Span}(S_2)$, it is enough to check that $S_1 \subset \operatorname{Span}(S_2)$ and $S_2 \subset \operatorname{Span}(S_1)$.

More properties of span

Let S_0 and S be subsets of a vector space V.

•
$$S_0 \subset S \implies \operatorname{Span}(S_0) \subset \operatorname{Span}(S).$$

•
$$\operatorname{Span}(S_0) = V$$
 and $S_0 \subset S \implies \operatorname{Span}(S) = V$.

• If $\mathbf{v}_0, \mathbf{v}_1, \dots, \mathbf{v}_k$ is a spanning set for V and \mathbf{v}_0 is a linear combination of vectors $\mathbf{v}_1, \dots, \mathbf{v}_k$ then $\mathbf{v}_1, \dots, \mathbf{v}_k$ is also a spanning set for V.

Indeed, if $\mathbf{v}_0 = r_1 \mathbf{v}_1 + \cdots + r_k \mathbf{v}_k$, then $t_0 \mathbf{v}_0 + t_1 \mathbf{v}_1 + \cdots + t_k \mathbf{v}_k = (t_0 r_1 + t_1) \mathbf{v}_1 + \cdots + (t_0 r_k + t_k) \mathbf{v}_k$.

•
$$\operatorname{Span}(S_0 \cup \{\mathbf{v}_0\}) = \operatorname{Span}(S_0)$$
 if and only if $\mathbf{v}_0 \in \operatorname{Span}(S_0)$.

If $\mathbf{v}_0 \in \operatorname{Span}(S_0)$, then $S_0 \cup \mathbf{v}_0 \subset \operatorname{Span}(S_0)$, which implies $\operatorname{Span}(S_0 \cup \{\mathbf{v}_0\}) \subset \operatorname{Span}(S_0)$. On the other hand, $\operatorname{Span}(S_0) \subset \operatorname{Span}(S_0 \cup \{\mathbf{v}_0\})$.