MATH 304
Linear Algebra

Lecture 20:
Change of coordinates (continued). Linear transformations.

Basis and coordinates

If $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ is a basis for a vector space V, then any vector $\mathbf{v} \in V$ has a unique representation

$$
\mathbf{v}=x_{1} \mathbf{v}_{1}+x_{2} \mathbf{v}_{2}+\cdots+x_{n} \mathbf{v}_{n}
$$

where $x_{i} \in \mathbb{R}$. The coefficients $x_{1}, x_{2}, \ldots, x_{n}$ are called the coordinates of \mathbf{v} with respect to the ordered basis $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$.

The mapping
vector $\mathbf{v} \mapsto$ its coordinates $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$
is a one-to-one correspondence between V and \mathbb{R}^{n}.
This correspondence respects linear operations in V and in \mathbb{R}^{n}.

Examples. - Coordinates of a vector
$\mathbf{v}=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$ relative to the standard basis $\mathbf{e}_{1}=(1,0, \ldots, 0,0), \mathbf{e}_{2}=(0,1, \ldots, 0,0), \ldots$, $\mathbf{e}_{n}=(0,0, \ldots, 0,1)$ are $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$.

- Coordinates of a matrix $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathcal{M}_{2,2}(\mathbb{R})$ relative to the basis $\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)$, $\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)$ are (a, b, c, d).
- Coordinates of a polynomial $p(x)=a_{0}+a_{1} x+\cdots+a_{n-1} x^{n-1} \in \mathcal{P}_{n}$ relative to the basis $1, x, x^{2}, \ldots, x^{n-1}$ are $\left(a_{0}, a_{1}, \ldots, a_{n-1}\right)$.

Change of coordinates in \mathbb{R}^{n}

The usual (standard) coordinates of a vector $\mathbf{v}=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$ are coordinates relative to the standard basis $\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{n}$. Let $\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{n}$ be another basis for \mathbb{R}^{n} and $\left(x_{1}^{\prime}, x_{2}^{\prime}, \ldots, x_{n}^{\prime}\right)$ be the coordinates of the same vector \mathbf{v} with respect to this basis. Then

$$
\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right)=\left(\begin{array}{cccc}
u_{11} & u_{12} & \ldots & u_{1 n} \\
u_{21} & u_{22} & \ldots & u_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
u_{n 1} & u_{n 2} & \ldots & u_{n n}
\end{array}\right)\left(\begin{array}{c}
x_{1}^{\prime} \\
x_{2}^{\prime} \\
\vdots \\
x_{n}^{\prime}
\end{array}\right),
$$

where the matrix $U=\left(u_{i j}\right)$ does not depend on the vector \mathbf{v}. Namely, columns of U are coordinates of vectors
$\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{n}$ with respect to the standard basis. U is called the transition matrix from the basis $\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{n}$ to the standard basis $\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{n}$. The inverse matrix U^{-1} is called the transition matrix from $\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}$ to $\mathbf{u}_{1}, \ldots, \mathbf{u}_{n}$.

Problem. Find coordinates of the vector $\mathbf{v}=(1,2,3)$ with respect to the basis $\mathbf{u}_{1}=(1,1,0), \mathbf{u}_{2}=(0,1,1), \mathbf{u}_{3}=(1,1,1)$.
The nonstandard coordinates ($x^{\prime}, y^{\prime}, z^{\prime}$) of \mathbf{v} satisfy

$$
\left(\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right)=U\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right),
$$

where U is the transition matrix from the standard basis $\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}$ to the basis $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}$.

The transition matrix from $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}$ to $\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}$ is

$$
U_{0}=\left(\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right)=\left(\begin{array}{l|l|l}
1 & 0 & 1 \\
1 & 1 & 1 \\
0 & 1 & 1
\end{array}\right) .
$$

The transition matrix from $\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}$ to $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}$ is the inverse matrix: $U=U_{0}^{-1}$.

The inverse matrix can be computed using row reduction.
$\left(U_{0} \mid I\right)=\left(\begin{array}{lll|lll}1 & 0 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1\end{array}\right)$
$\rightarrow\left(\begin{array}{rrr|rrr}1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & -1 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1\end{array}\right) \rightarrow\left(\begin{array}{lll|rrr}1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & -1 & 1 & 0 \\ 0 & 0 & 1 & 1 & -1 & 1\end{array}\right)$
$\rightarrow\left(\begin{array}{rrr|rrr}1 & 0 & 0 & 0 & 1 & -1 \\ 0 & 1 & 0 & -1 & 1 & 0 \\ 0 & 0 & 1 & 1 & -1 & 1\end{array}\right)=\left(I \mid U_{0}^{-1}\right)$
Thus

$$
\left(\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right)=\left(\begin{array}{rrr}
0 & 1 & -1 \\
-1 & 1 & 0 \\
1 & -1 & 1
\end{array}\right)\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right)=\left(\begin{array}{r}
-1 \\
1 \\
2
\end{array}\right) .
$$

Change of coordinates: general case

Let V be a vector space of dimension n.
Let $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$ be a basis for V and $g_{1}: V \rightarrow \mathbb{R}^{n}$ be the coordinate mapping corresponding to this basis.

Let $\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{n}$ be another basis for V and $g_{2}: V \rightarrow \mathbb{R}^{n}$ be the coordinate mapping corresponding to this basis.

The composition $g_{2} \circ g_{1}^{-1}$ is a transformation of \mathbb{R}^{n}. It has the form $\mathbf{x} \mapsto U \mathbf{x}$, where U is an $n \times n$ matrix. U is called the transition matrix from $\mathbf{v}_{1}, \mathbf{v}_{2} \ldots, \mathbf{v}_{n}$ to $\mathbf{u}_{1}, \mathbf{u}_{2} \ldots, \mathbf{u}_{n}$. Columns of U are coordinates of the vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$ with respect to the basis $\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{n}$.

Problem. Find the transition matrix from the basis $p_{1}(x)=1, p_{2}(x)=x+1, p_{3}(x)=(x+1)^{2}$ to the basis $q_{1}(x)=1, q_{2}(x)=x, q_{3}(x)=x^{2}$ for the vector space \mathcal{P}_{3}.

We have to find coordinates of the polynomials p_{1}, p_{2}, p_{3} with respect to the basis q_{1}, q_{2}, q_{3} :
$p_{1}(x)=1=q_{1}(x)$,
$p_{2}(x)=x+1=q_{1}(x)+q_{2}(x)$,
$p_{3}(x)=(x+1)^{2}=x^{2}+2 x+1=q_{1}(x)+2 q_{2}(x)+q_{3}(x)$.
Hence the transition matrix is $\left(\begin{array}{lll}1 & 1 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 1\end{array}\right)$.

Thus the polynomial identity

$$
a_{1}+a_{2}(x+1)+a_{3}(x+1)^{2}=b_{1}+b_{2} x+b_{3} x^{2}
$$

is equivalent to the relation

$$
\left(\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right)=\left(\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 2 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right) .
$$

Problem. Find the transition matrix from the basis $\mathbf{v}_{1}=(1,2,3), \mathbf{v}_{2}=(1,0,1), \mathbf{v}_{3}=(1,2,1)$ to the basis $\mathbf{u}_{1}=(1,1,0), \mathbf{u}_{2}=(0,1,1), \mathbf{u}_{3}=(1,1,1)$.

It is convenient to make a two-step transition: first from $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ to $\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}$, and then from $\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}$ to $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}$.
Let U_{1} be the transition matrix from $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ to $\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}$ and U_{2} be the transition matrix from $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}$ to $\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}:$

$$
U_{1}=\left(\begin{array}{lll}
1 & 1 & 1 \\
2 & 0 & 2 \\
3 & 1 & 1
\end{array}\right), \quad U_{2}=\left(\begin{array}{lll}
1 & 0 & 1 \\
1 & 1 & 1 \\
0 & 1 & 1
\end{array}\right)
$$

Basis $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3} \Longrightarrow$ coordinates \mathbf{x} Basis $\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3} \Longrightarrow$ coordinates $U_{1} \mathbf{x}$
Basis $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3} \Longrightarrow$ coordinates $U_{2}^{-1}\left(U_{1} \mathbf{x}\right)=\left(U_{2}^{-1} U_{1}\right) \mathbf{x}$
Thus the transition matrix from $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ to $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}$ is $U_{2}^{-1} U_{1}$.

$$
\begin{gathered}
U_{2}^{-1} U_{1}=\left(\begin{array}{lll}
1 & 0 & 1 \\
1 & 1 & 1 \\
0 & 1 & 1
\end{array}\right)^{-1}\left(\begin{array}{lll}
1 & 1 & 1 \\
2 & 0 & 2 \\
3 & 1 & 1
\end{array}\right) \\
=\left(\begin{array}{rrr}
0 & 1 & -1 \\
-1 & 1 & 0 \\
1 & -1 & 1
\end{array}\right)\left(\begin{array}{lll}
1 & 1 & 1 \\
2 & 0 & 2 \\
3 & 1 & 1
\end{array}\right)=\left(\begin{array}{rrr}
-1 & -1 & 1 \\
1 & -1 & 1 \\
2 & 2 & 0
\end{array}\right) .
\end{gathered}
$$

Linear mapping $=$ linear transformation $=$ linear function
Definition. Given vector spaces V_{1} and V_{2}, a mapping $L: V_{1} \rightarrow V_{2}$ is linear if

$$
\begin{gathered}
L(\mathbf{x}+\mathbf{y})=L(\mathbf{x})+L(\mathbf{y}), \\
L(r \mathbf{x})=r L(\mathbf{x})
\end{gathered}
$$

for any $\mathbf{x}, \mathbf{y} \in V_{1}$ and $r \in \mathbb{R}$.
A linear mapping $\ell: V \rightarrow \mathbb{R}$ is called a linear functional on V.

If $V_{1}=V_{2}$ (or if both V_{1} and V_{2} are functional spaces) then a linear mapping $L: V_{1} \rightarrow V_{2}$ is called a linear operator.

Linear mapping $=$ linear transformation $=$ linear function

Definition. Given vector spaces V_{1} and V_{2}, a mapping $L: V_{1} \rightarrow V_{2}$ is linear if

$$
\begin{gathered}
L(\mathbf{x}+\mathbf{y})=L(\mathbf{x})+L(\mathbf{y}), \\
L(r \mathbf{x})=r L(\mathbf{x})
\end{gathered}
$$

for any $\mathbf{x}, \mathbf{y} \in V_{1}$ and $r \in \mathbb{R}$.
Remark. A function $f: \mathbb{R} \rightarrow \mathbb{R}$ given by $f(x)=a x+b$ is a linear transformation of the vector space \mathbb{R} if and only if $b=0$.

Examples of linear mappings

- Scaling $L: V \rightarrow V, L(\mathbf{v})=s \mathbf{v}$, where $s \in \mathbb{R}$. $L(\mathbf{x}+\mathbf{y})=s(\mathbf{x}+\mathbf{y})=s \mathbf{x}+s \mathbf{y}=L(\mathbf{x})+L(\mathbf{y})$, $L(r \mathbf{x})=s(r \mathbf{x})=r(s \mathbf{x})=r L(\mathbf{x})$.
- Dot product with a fixed vector $\ell: \mathbb{R}^{n} \rightarrow \mathbb{R}, \quad \ell(\mathbf{v})=\mathbf{v} \cdot \mathbf{v}_{0}$, where $\mathbf{v}_{0} \in \mathbb{R}^{n}$. $\ell(\mathbf{x}+\mathbf{y})=(\mathbf{x}+\mathbf{y}) \cdot \mathbf{v}_{0}=\mathbf{x} \cdot \mathbf{v}_{0}+\mathbf{y} \cdot \mathbf{v}_{0}=\ell(\mathbf{x})+\ell(\mathbf{y})$, $\ell(r \mathbf{x})=(r \mathbf{x}) \cdot \mathbf{v}_{0}=r\left(\mathbf{x} \cdot \mathbf{v}_{0}\right)=r \ell(\mathbf{x})$.
- Cross product with a fixed vector
$L: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}, L(\mathbf{v})=\mathbf{v} \times \mathbf{v}_{0}$, where $\mathbf{v}_{0} \in \mathbb{R}^{3}$.
- Multiplication by a fixed matrix
$L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}, L(\mathbf{v})=A \mathbf{v}$, where A is an $m \times n$ matrix and all vectors are column vectors.

Linear mappings of functional vector spaces

- Evaluation at a fixed point $\ell: F(\mathbb{R}) \rightarrow \mathbb{R}, \quad \ell(f)=f(a)$, where $a \in \mathbb{R}$.
- Multiplication by a fixed function $L: F(\mathbb{R}) \rightarrow F(\mathbb{R}), \quad L(f)=g f$, where $g \in F(\mathbb{R})$.
- Differentiation $D: C^{1}(\mathbb{R}) \rightarrow C(\mathbb{R}), \quad L(f)=f^{\prime}$.
$D(f+g)=(f+g)^{\prime}=f^{\prime}+g^{\prime}=D(f)+D(g)$, $D(r f)=(r f)^{\prime}=r f^{\prime}=r D(f)$.
- Integration over a finite interval
$\ell: C(\mathbb{R}) \rightarrow \mathbb{R}, \quad \ell(f)=\int_{a}^{b} f(x) d x$, where $a, b \in \mathbb{R}, a<b$.

