MATH 304 Linear Algebra

Lecture 23: Matrix of a linear transformation (continued). Similar matrices.

Matrix transformations

Theorem Suppose $L : \mathbb{R}^n \to \mathbb{R}^m$ is a linear map. Then there exists an $m \times n$ matrix A such that $L(\mathbf{x}) = A\mathbf{x}$ for all $\mathbf{x} \in \mathbb{R}^n$. Columns of A are vectors $L(\mathbf{e}_1), L(\mathbf{e}_2), \ldots, L(\mathbf{e}_n)$, where $\mathbf{e}_1, \mathbf{e}_2, \ldots, \mathbf{e}_n$ is the standard basis for \mathbb{R}^n .

$$\mathbf{y} = A\mathbf{x} \quad \Longleftrightarrow \quad \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$

$$\iff \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{pmatrix} = x_1 \begin{pmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{pmatrix} + x_2 \begin{pmatrix} a_{12} \\ a_{22} \\ \vdots \\ a_{m2} \end{pmatrix} + \dots + x_n \begin{pmatrix} a_{1n} \\ a_{2n} \\ \vdots \\ a_{mn} \end{pmatrix}$$

Basis and coordinates

If $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ is a basis for a vector space V, then any vector $\mathbf{v} \in V$ has a unique representation

 $\mathbf{v} = x_1\mathbf{v}_1 + x_2\mathbf{v}_2 + \cdots + x_n\mathbf{v}_n,$

where $x_i \in \mathbb{R}$. The coefficients x_1, x_2, \ldots, x_n are called the **coordinates** of **v** with respect to the ordered basis $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n$.

The coordinate mapping

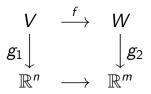
vector $\mathbf{v} \mapsto its$ coordinates (x_1, x_2, \ldots, x_n)

provides a one-to-one correspondence between V and \mathbb{R}^n . This correspondence is **linear**.

Matrix of a linear transformation

Let V, W be vector spaces and $f: V \to W$ be a linear map. Let $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ be a basis for V and $g_1: V \to \mathbb{R}^n$ be the coordinate mapping corresponding to this basis.

Let $\mathbf{w}_1, \mathbf{w}_2, \ldots, \mathbf{w}_m$ be a basis for W and $g_2 : W \to \mathbb{R}^m$ be the coordinate mapping corresponding to this basis.



The composition $g_2 \circ f \circ g_1^{-1}$ is a linear mapping of \mathbb{R}^n to \mathbb{R}^m . Hence it's represented as $\mathbf{x} \mapsto A\mathbf{x}$, where A is an $m \times n$ matrix. A is called the **matrix of** f with respect to bases $\mathbf{v}_1, \ldots, \mathbf{v}_n$ and $\mathbf{w}_1, \ldots, \mathbf{w}_m$. Columns of A are coordinates of vectors $f(\mathbf{v}_1), \ldots, f(\mathbf{v}_n)$ with respect to the basis $\mathbf{w}_1, \ldots, \mathbf{w}_m$. **Problem.** Consider a linear operator L on the vector space of 2×2 matrices given by

$$L\begin{pmatrix} x & y \\ z & w \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} x & y \\ z & w \end{pmatrix}.$$

Find the matrix of L with respect to the basis

$$E_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, E_2 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, E_3 = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, E_4 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

Let M_L denote the desired matrix.

It follows from the definition that M_L is a 4×4 matrix whose columns are coordinates of the matrices

$$L(E_1), L(E_2), L(E_3), L(E_4)$$

with respect to the basis E_1, E_2, E_3, E_4 .

$$L(E_{1}) = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 3 & 0 \end{pmatrix} = 1E_{1} + 0E_{2} + 3E_{3} + 0E_{4},$$

$$L(E_{2}) = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 0 & 3 \end{pmatrix} = 0E_{1} + 1E_{2} + 0E_{3} + 3E_{4},$$

$$L(E_{3}) = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 2 & 0 \\ 4 & 0 \end{pmatrix} = 2E_{1} + 0E_{2} + 4E_{3} + 0E_{4},$$

$$L(E_{4}) = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 2 \\ 0 & 4 \end{pmatrix} = 0E_{1} + 2E_{2} + 0E_{3} + 4E_{4}.$$

Therefore

$$M_L = egin{pmatrix} 1 & 0 & 2 & 0 \ 0 & 1 & 0 & 2 \ 3 & 0 & 4 & 0 \ 0 & 3 & 0 & 4 \end{pmatrix}.$$

Thus the relation

$$\begin{pmatrix} x_1 & y_1 \\ z_1 & w_1 \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} x & y \\ z & w \end{pmatrix}$$

is equivalent to the relation

$$\begin{pmatrix} x_1 \\ y_1 \\ z_1 \\ w_1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 2 & 0 \\ 0 & 1 & 0 & 2 \\ 3 & 0 & 4 & 0 \\ 0 & 3 & 0 & 4 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ w \end{pmatrix}$$

.

Problem. Consider a linear operator $L : \mathbb{R}^2 \to \mathbb{R}^2$,

$$L\begin{pmatrix} x\\ y \end{pmatrix} = \begin{pmatrix} 1 & 1\\ 0 & 1 \end{pmatrix} \begin{pmatrix} x\\ y \end{pmatrix}.$$

Find the matrix of L with respect to the basis $\mathbf{v}_1 = (3, 1)$, $\mathbf{v}_2 = (2, 1)$.

Let *N* be the desired matrix. Columns of *N* are coordinates of the vectors $L(\mathbf{v}_1)$ and $L(\mathbf{v}_2)$ w.r.t. the basis $\mathbf{v}_1, \mathbf{v}_2$.

$$\begin{split} \mathcal{L}(\mathbf{v}_1) &= \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 3 \\ 1 \end{pmatrix} = \begin{pmatrix} 4 \\ 1 \end{pmatrix}, \quad \mathcal{L}(\mathbf{v}_2) = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 2 \\ 1 \end{pmatrix} = \begin{pmatrix} 3 \\ 1 \end{pmatrix}. \\ \text{Clearly,} \quad \mathcal{L}(\mathbf{v}_2) &= \mathbf{v}_1 = 1\mathbf{v}_1 + 0\mathbf{v}_2. \end{split}$$

$$L(\mathbf{v}_1) = \alpha \mathbf{v}_1 + \beta \mathbf{v}_2 \iff \begin{cases} 3\alpha + 2\beta = 4\\ \alpha + \beta = 1 \end{cases} \iff \begin{cases} \alpha = 2\\ \beta = -1 \end{cases}$$

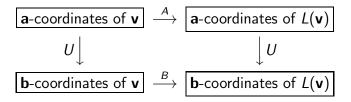
Thus $N = \begin{pmatrix} 2 & 1\\ -1 & 0 \end{pmatrix}$.

Change of basis for a linear operator

Let $L: V \to V$ be a linear operator on a vector space V.

Let A be the matrix of L relative to a basis $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n$ for V. Let B be the matrix of L relative to another basis $\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n$ for V.

Let U be the transition matrix from the basis $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n$ to $\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n$.



It follows that $UA\mathbf{x} = BU\mathbf{x}$ for all $\mathbf{x} \in \mathbb{R}^n \implies UA = BU$. Then $A = U^{-1}BU$ and $B = UAU^{-1}$. **Problem.** Consider a linear operator $L : \mathbb{R}^2 \to \mathbb{R}^2$, $L \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}.$

Find the matrix of L with respect to the basis $\mathbf{v}_1 = (3, 1)$, $\mathbf{v}_2 = (2, 1)$.

Let *S* be the matrix of *L* with respect to the standard basis, *N* be the matrix of *L* with respect to the basis \mathbf{v}_1 , \mathbf{v}_2 , and *U* be the transition matrix from \mathbf{v}_1 , \mathbf{v}_2 to \mathbf{e}_1 , \mathbf{e}_2 . Then $N = U^{-1}SU$.

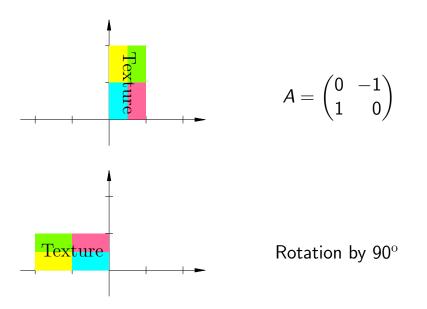
$$S = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \quad U = \begin{pmatrix} 3 & 2 \\ 1 & 1 \end{pmatrix},$$
$$N = U^{-1}SU = \begin{pmatrix} 1 & -2 \\ -1 & 3 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 3 & 2 \\ 1 & 1 \end{pmatrix}$$
$$= \begin{pmatrix} 1 & -1 \\ -1 & 2 \end{pmatrix} \begin{pmatrix} 3 & 2 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 1 \\ -1 & 0 \end{pmatrix}.$$

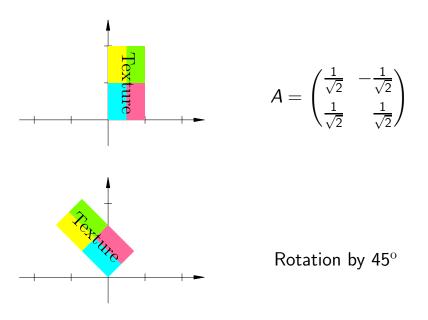
Linear transformations of \mathbb{R}^2

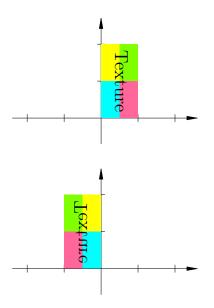
Any linear mapping $f : \mathbb{R}^2 \to \mathbb{R}^2$ is represented as multiplication of a 2-dimensional column vector by a 2×2 matrix: $f(\mathbf{x}) = A\mathbf{x}$ or

$$f\begin{pmatrix} x\\ y \end{pmatrix} = \begin{pmatrix} a & b\\ c & d \end{pmatrix} \begin{pmatrix} x\\ y \end{pmatrix}.$$

Linear transformations corresponding to particular matrices can have various geometric properties.

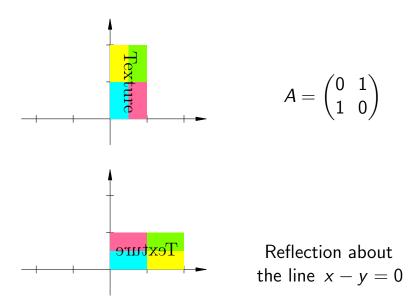


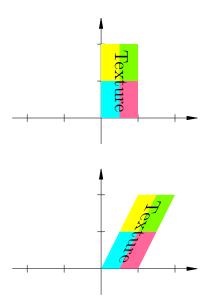




 $A = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$

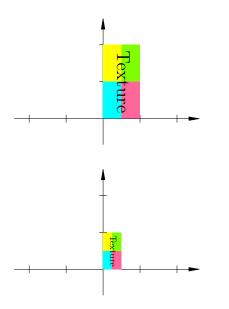
Reflection about the vertical axis



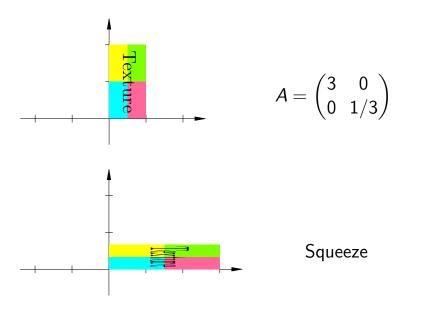


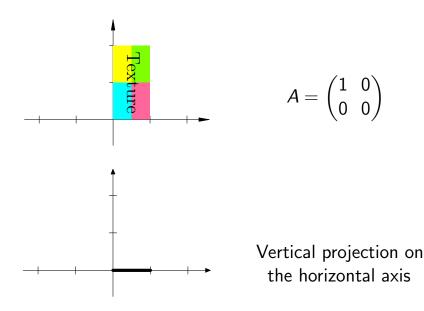
 $A = \begin{pmatrix} 1 & 1/2 \\ 0 & 1 \end{pmatrix}$

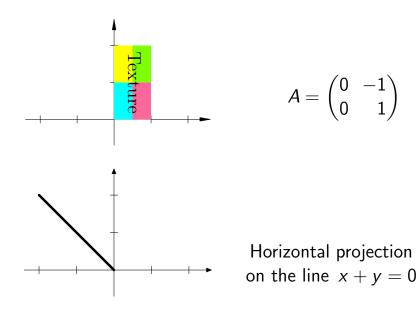
Horizontal shear

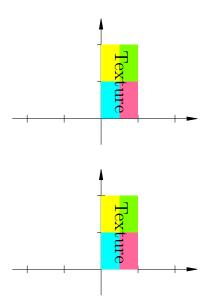


 $A = \begin{pmatrix} 1/2 & 0 \\ 0 & 1/2 \end{pmatrix}$









 $A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$

Identity

Similarity of matrices

Definition. An $n \times n$ matrix B is said to be **similar** to an $n \times n$ matrix A if $B = S^{-1}AS$ for some nonsingular $n \times n$ matrix S.

Remark. Two $n \times n$ matrices are similar if and only if they represent the same linear operator on \mathbb{R}^n with respect to different bases.

Theorem Similarity is an equivalence relation, which means that (i) any square matrix A is similar to itself;
(ii) if B is similar to A, then A is similar to B;
(iii) if A is similar to B and B is similar to C, then A is similar to C.

Corollary The set of $n \times n$ matrices is partitioned into disjoint subsets (called *similarity classes*) such that all matrices in the same subset are similar to each other while matrices from different subsets are never similar.

Theorem Similarity is an equivalence relation, i.e.,
(i) any square matrix A is similar to itself;
(ii) if B is similar to A, then A is similar to B;
(iii) if A is similar to B and B is similar to C, then A is similar to C.

Proof: (i)
$$A = I^{-1}AI$$
.
(ii) If $B = S^{-1}AS$ then $A = SBS^{-1} = (S^{-1})^{-1}BS^{-1}$
 $= S_1^{-1}BS_1$, where $S_1 = S^{-1}$.
(iii) If $A = S^{-1}BS$ and $B = T^{-1}CT$ then
 $A = S^{-1}(T^{-1}CT)S = (S^{-1}T^{-1})C(TS) = (TS)^{-1}C(TS)$
 $= S_2^{-1}CS_2$, where $S_2 = TS$.

Theorem If A and B are similar matrices then they have the same (i) determinant, (ii) trace = the sum of diagonal entries, (iii) rank, and (iv) nullity.