MATH 304

Lecture 27: Norms and inner products.

Linear Algebra

J

Norm

The notion of *norm* generalizes the notion of length of a vector in \mathbb{R}^n .

Definition. Let V be a vector space. A function $\alpha:V\to\mathbb{R}$ is called a **norm** on V if it has the following properties:

(i)
$$\alpha(\mathbf{x}) \geq 0$$
, $\alpha(\mathbf{x}) = 0$ only for $\mathbf{x} = \mathbf{0}$ (positivity)
(ii) $\alpha(r\mathbf{x}) = |r| \alpha(\mathbf{x})$ for all $r \in \mathbb{R}$ (homogeneity)
(iii) $\alpha(\mathbf{x} + \mathbf{y}) \leq \alpha(\mathbf{x}) + \alpha(\mathbf{y})$ (triangle inequality)

Notation. The norm of a vector $\mathbf{x} \in V$ is usually denoted $\|\mathbf{x}\|$. Different norms on V are distinguished by subscripts, e.g., $\|\mathbf{x}\|_1$ and $\|\mathbf{x}\|_2$.

Examples. $V = \mathbb{R}^n$, $\mathbf{x} = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n$.

• $\|\mathbf{x}\|_{\infty} = \max(|x_1|, |x_2|, \dots, |x_n|).$

Positivity and homogeneity are obvious.

The triangle inequality:

$$|x_i + y_i| \le |x_i| + |y_i| \le \max_j |x_j| + \max_j |y_j|$$

$$\implies \max_j |x_j + y_j| \le \max_j |x_j| + \max_j |y_j|$$

• $\|\mathbf{x}\|_1 = |x_1| + |x_2| + \cdots + |x_n|$.

Positivity and homogeneity are obvious.

The triangle inequality: $|x_i + y_i| \le |x_i| + |y_i|$

$$\implies \sum_{j} |x_j + y_j| \le \sum_{j} |x_j| + \sum_{j} |y_j|$$

Examples. $V = \mathbb{R}^n$, $\mathbf{x} = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n$.

• $\|\mathbf{x}\|_p = (|x_1|^p + |x_2|^p + \cdots + |x_n|^p)^{1/p}, \quad p > 0.$

Remark. $\|\mathbf{x}\|_2 = \text{Euclidean length of } \mathbf{x}$.

Theorem $\|\mathbf{x}\|_p$ is a norm on \mathbb{R}^n for any $p \geq 1$.

Positivity and homogeneity are still obvious (and hold for any p > 0). The triangle inequality for $p \ge 1$ is known as the **Minkowski inequality**:

$$p \ge 1$$
 is known as the **Winkowski mequality**.
 $(|x_1 + y_1|^p + |x_2 + y_2|^p + \dots + |x_n + y_n|^p)^{1/p} \le \le (|x_1|^p + \dots + |x_n|^p)^{1/p} + (|y_1|^p + \dots + |y_n|^p)^{1/p}.$

Normed vector space

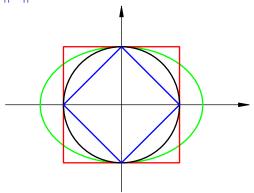
Definition. A **normed vector space** is a vector space endowed with a norm.

The norm defines a distance function on the normed vector space: $\operatorname{dist}(\mathbf{x}, \mathbf{y}) = \|\mathbf{x} - \mathbf{y}\|$.

Then we say that a sequence $\mathbf{x}_1, \mathbf{x}_2, \ldots$ converges to a vector \mathbf{x} if $\operatorname{dist}(\mathbf{x}, \mathbf{x}_n) \to 0$ as $n \to \infty$.

Also, we say that a vector \mathbf{x} is a good approximation of a vector \mathbf{x}_0 if $\operatorname{dist}(\mathbf{x}, \mathbf{x}_0)$ is small.

Unit circle: $\|\mathbf{x}\| = 1$



$$\begin{split} \|\mathbf{x}\| &= (x_1^2 + x_2^2)^{1/2} & \text{black} \\ \|\mathbf{x}\| &= \left(\frac{1}{2}x_1^2 + x_2^2\right)^{1/2} & \text{green} \\ \|\mathbf{x}\| &= |x_1| + |x_2| & \text{blue} \\ \|\mathbf{x}\| &= \max(|x_1|, |x_2|) & \text{red} \end{split}$$

Examples. $V = C[a, b], f : [a, b] \rightarrow \mathbb{R}.$

$$\bullet \quad ||f||_{\infty} = \max_{a \le x \le b} |f(x)|.$$

•
$$||f||_1 = \int_a^b |f(x)| dx$$
.

•
$$||f||_p = \left(\int_a^b |f(x)|^p dx\right)^{1/p}, \ p > 0.$$

Theorem $||f||_p$ is a norm on C[a, b] for any $p \ge 1$.

Inner product

The notion of *inner product* generalizes the notion of dot product of vectors in \mathbb{R}^n .

Definition. Let V be a vector space. A function $\beta: V \times V \to \mathbb{R}$, usually denoted $\beta(\mathbf{x}, \mathbf{y}) = \langle \mathbf{x}, \mathbf{y} \rangle$, is called an **inner product** on V if it is positive, symmetric, and bilinear. That is, if (i) $\langle \mathbf{x}, \mathbf{x} \rangle > 0$, $\langle \mathbf{x}, \mathbf{x} \rangle = 0$ only for $\mathbf{x} = \mathbf{0}$ (positivity) (ii) $\langle \mathbf{x}, \mathbf{y} \rangle = \langle \mathbf{y}, \mathbf{x} \rangle$ (symmetry) (iii) $\langle r\mathbf{x}, \mathbf{y} \rangle = r \langle \mathbf{x}, \mathbf{y} \rangle$ (homogeneity) (iv) $\langle \mathbf{x} + \mathbf{y}, \mathbf{z} \rangle = \langle \mathbf{x}, \mathbf{z} \rangle + \langle \mathbf{y}, \mathbf{z} \rangle$ (distributive law)

An **inner product space** is a vector space endowed with an inner product.

Examples. $V = \mathbb{R}^n$.

- $\langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{x} \cdot \mathbf{y} = x_1 y_1 + x_2 y_2 + \cdots + x_n y_n$.
- $\langle \mathbf{x}, \mathbf{y} \rangle = d_1 x_1 y_1 + d_2 x_2 y_2 + \dots + d_n x_n y_n$, where $d_1, d_2, \dots, d_n > 0$.
- $\langle \mathbf{x}, \mathbf{y} \rangle = (D\mathbf{x}) \cdot (D\mathbf{y})$, where D is an invertible $n \times n$ matrix.

Remarks. (a) Invertibility of *D* is necessary to show that $\langle \mathbf{x}, \mathbf{x} \rangle = 0 \implies \mathbf{x} = \mathbf{0}$.

(b) The second example is a particular case of the third one when $D = \operatorname{diag}(d_1^{1/2}, d_2^{1/2}, \dots, d_n^{1/2})$.

Counterexamples. $V = \mathbb{R}^2$.

$$\bullet \ \langle \mathbf{x}, \mathbf{y} \rangle = x_1 y_1 - x_2 y_2.$$

Let $\mathbf{v} = (1, 2)$, then $\langle \mathbf{v}, \mathbf{v} \rangle = 1^2 - 2^2 = -3$. $\langle \mathbf{x}, \mathbf{y} \rangle$ is symmetric and bilinear, but not positive.

•
$$\langle \mathbf{x}, \mathbf{y} \rangle = 2x_1y_1 + x_1x_2 + 2x_2y_2 + y_1y_2$$
.

 $\mathbf{v}=(1,1)$, $\mathbf{w}=(1,0) \implies \langle \mathbf{v},\mathbf{w}\rangle = 3$, $\langle 2\mathbf{v},\mathbf{w}\rangle = 8$. $\langle \mathbf{x},\mathbf{y}\rangle$ is positive and symmetric, but not bilinear.

•
$$\langle \mathbf{x}, \mathbf{y} \rangle = x_1 y_1 + x_1 y_2 - x_2 y_1 + x_2 y_2.$$

 $\mathbf{v} = (1,1)$, $\mathbf{w} = (1,0) \implies \langle \mathbf{v}, \mathbf{w} \rangle = 0$, $\langle \mathbf{w}, \mathbf{v} \rangle = 2$. $\langle \mathbf{x}, \mathbf{y} \rangle$ is positive and bilinear, but not symmetric.

Problem. Find an inner product on \mathbb{R}^2 such that $\langle \mathbf{e}_1, \mathbf{e}_1 \rangle = 2$, $\langle \mathbf{e}_2, \mathbf{e}_2 \rangle = 3$, and $\langle \mathbf{e}_1, \mathbf{e}_2 \rangle = -1$, where $\mathbf{e}_1 = (1,0)$, $\mathbf{e}_2 = (0,1)$.

Let $\mathbf{x} = (x_1, x_2)$, $\mathbf{y} = (y_1, y_2) \in \mathbb{R}^2$. Then $\mathbf{x} = x_1 \mathbf{e}_1 + x_2 \mathbf{e}_2$, $\mathbf{y} = y_1 \mathbf{e}_1 + y_2 \mathbf{e}_2$. Using bilinearity, we obtain

$$\langle \mathbf{x}, \mathbf{y} \rangle = \langle x_1 \mathbf{e}_1 + x_2 \mathbf{e}_2, y_1 \mathbf{e}_1 + y_2 \mathbf{e}_2 \rangle$$

$$= x_1 \langle \mathbf{e}_1, y_1 \mathbf{e}_1 + y_2 \mathbf{e}_2 \rangle + x_2 \langle \mathbf{e}_2, y_1 \mathbf{e}_1 + y_2 \mathbf{e}_2 \rangle$$

$$= x_1 y_1 \langle \mathbf{e}_1, \mathbf{e}_1 \rangle + x_1 y_2 \langle \mathbf{e}_1, \mathbf{e}_2 \rangle + x_2 y_1 \langle \mathbf{e}_2, \mathbf{e}_1 \rangle + x_2 y_2 \langle \mathbf{e}_2, \mathbf{e}_2 \rangle$$

 $= 2x_1y_1 - x_1y_2 - x_2y_1 + 3x_2y_2.$ It remains to check that $\langle \mathbf{x}, \mathbf{x} \rangle > 0$ for $\mathbf{x} \neq \mathbf{0}$. $\langle \mathbf{x}, \mathbf{x} \rangle = 2x_1^2 - 2x_1x_2 + 3x_2^2 = (x_1 - x_2)^2 + x_1^2 + 2x_2^2$.

Example. $V = \mathcal{M}_{m,n}(\mathbb{R})$, space of $m \times n$ matrices.

•
$$\langle A, B \rangle = \operatorname{trace}(AB^T)$$
.

If $A=(a_{ij})$ and $B=(b_{ij})$, then $\langle A,B\rangle=\sum\limits_{i=1}^{m}\sum\limits_{j=1}^{n}a_{ij}b_{ij}$.

Examples. V = C[a, b].

- $\langle f,g\rangle = \int_a^b f(x)g(x) dx$.
- $\langle f,g\rangle = \int_a^b f(x)g(x)w(x) dx$,

where w is bounded, piecewise continuous, and w > 0 everywhere on [a, b].

w is called the **weight** function.