> MATH 304
> Linear Algebra
> Lecture 32:
> Eigenvalues and eigenvectors of a linear operator.

Eigenvalues and eigenvectors of a matrix

Definition. Let A be an $n \times n$ matrix. A number $\lambda \in \mathbb{R}$ is called an eigenvalue of the matrix A if $A \mathbf{v}=\lambda \mathbf{v}$ for a nonzero column vector $\mathbf{v} \in \mathbb{R}^{n}$. The vector \mathbf{v} is called an eigenvector of A belonging to (or associated with) the eigenvalue λ.

If λ is an eigenvalue of A then the nullspace $N(A-\lambda I)$, which is nontrivial, is called the eigenspace of A corresponding to λ. The eigenspace consists of all eigenvectors belonging to the eigenvalue λ plus the zero vector.

Characteristic equation

Definition. Given a square matrix A, the equation $\operatorname{det}(A-\lambda I)=0$ is called the characteristic equation of A.
Eigenvalues λ of A are roots of the characteristic equation.

If A is an $n \times n$ matrix then $p(\lambda)=\operatorname{det}(A-\lambda I)$ is a polynomial of degree n. It is called the characteristic polynomial of A.

Theorem Any $n \times n$ matrix has at most n eigenvalues.

Eigenvalues and eigenvectors of an operator

Definition. Let V be a vector space and $L: V \rightarrow V$ be a linear operator. A number λ is called an eigenvalue of the operator L if $L(\mathbf{v})=\lambda \mathbf{v}$ for a nonzero vector $\mathbf{v} \in V$. The vector \mathbf{v} is called an eigenvector of L associated with the eigenvalue λ.
(If V is a functional space then eigenvectors are also called eigenfunctions.)

If $V=\mathbb{R}^{n}$ then the linear operator L is given by $L(\mathbf{x})=A \mathbf{x}$, where A is an $n \times n$ matrix.
In this case, eigenvalues and eigenvectors of the operator L are precisely eigenvalues and eigenvectors of the matrix A.

Suppose $L: V \rightarrow V$ is a linear operator on a finite-dimensional vector space V.
Let $\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{n}$ be a basis for V and $g: V \rightarrow \mathbb{R}^{n}$ be the corresponding coordinate mapping. Let A be the matrix of L with respect to this basis. Then

$$
L(\mathbf{v})=\lambda \mathbf{v} \Longleftrightarrow A g(\mathbf{v})=\lambda g(\mathbf{v})
$$

Hence the eigenvalues of L coincide with those of the matrix A. Moreover, the associated eigenvectors of A are coordinates of the eigenvectors of L.

Definition. The characteristic polynomial $p(\lambda)=\operatorname{det}(A-\lambda I)$ of the matrix A is called the characteristic polynomial of the operator L.
Then eigenvalues of L are roots of its characteristic polynomial.

Theorem. The characteristic polynomial of the operator L is well defined. That is, it does not depend on the choice of a basis.

Proof: Let B be the matrix of L with respect to a different basis $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$. Then $A=U B U^{-1}$, where U is the transition matrix from the basis $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ to $\mathbf{u}_{1}, \ldots, \mathbf{u}_{n}$. We have to show that $\operatorname{det}(A-\lambda I)=\operatorname{det}(B-\lambda I)$ for all $\lambda \in \mathbb{R}$. We obtain

$$
\operatorname{det}(A-\lambda I)=\operatorname{det}\left(U B U^{-1}-\lambda I\right)
$$

$$
=\operatorname{det}\left(U B U^{-1}-U(\lambda I) U^{-1}\right)=\operatorname{det}\left(U(B-\lambda I) U^{-1}\right)
$$

$$
=\operatorname{det}(U) \operatorname{det}(B-\lambda I) \operatorname{det}\left(U^{-1}\right)=\operatorname{det}(B-\lambda I)
$$

Eigenspaces

Let $L: V \rightarrow V$ be a linear operator.
For any $\lambda \in \mathbb{R}$, let V_{λ} denotes the set of all solutions of the equation $L(\mathbf{x})=\lambda \mathbf{x}$.
Then V_{λ} is a subspace of V since V_{λ} is the kernel of a linear operator given by $\mathbf{x} \mapsto L(\mathbf{x})-\lambda \mathbf{x}$.
V_{λ} minus the zero vector is the set of all eigenvectors of L associated with the eigenvalue λ. In particular, $\lambda \in \mathbb{R}$ is an eigenvalue of L if and only if $V_{\lambda} \neq\{\mathbf{0}\}$.
If $V_{\lambda} \neq\{0\}$ then it is called the eigenspace of L corresponding to the eigenvalue λ.

Example. $\quad V=C^{\infty}(\mathbb{R}), D: V \rightarrow V, D f=f^{\prime}$.
A function $f \in C^{\infty}(\mathbb{R})$ is an eigenfunction of the operator D belonging to an eigenvalue λ if $f^{\prime}(x)=\lambda f(x)$ for all $x \in \mathbb{R}$.
It follows that $f(x)=c e^{\lambda x}$, where c is a nonzero constant.

Thus each $\lambda \in \mathbb{R}$ is an eigenvalue of D.
The corresponding eigenspace is spanned by $e^{\lambda x}$.

Example. $\quad V=C^{\infty}(\mathbb{R}), L: V \rightarrow V, L f=f^{\prime \prime}$.
$L f=\lambda f \Longleftrightarrow f^{\prime \prime}(x)-\lambda f(x)=0$ for all $x \in \mathbb{R}$.
It follows that each $\lambda \in \mathbb{R}$ is an eigenvalue of L and the corresponding eigenspace V_{λ} is two-dimensional.
If $\lambda>0$ then $V_{\lambda}=\operatorname{Span}(\exp (\sqrt{\lambda} x), \exp (-\sqrt{\lambda} x))$.
If $\lambda<0$ then $V_{\lambda}=\operatorname{Span}(\sin (\sqrt{-\lambda} x), \cos (\sqrt{-\lambda} x))$.
If $\lambda=0$ then $V_{\lambda}=\operatorname{Span}(1, x)$.

Let V be a vector space and $L: V \rightarrow V$ be a linear operator.

Proposition 1 If $\mathbf{v} \in V$ is an eigenvector of the operator L then the associated eigenvalue is unique.

Proof: Suppose that $L(\mathbf{v})=\lambda_{1} \mathbf{v}$ and $L(\mathbf{v})=\lambda_{2} \mathbf{v}$. Then $\lambda_{1} \mathbf{v}=\lambda_{2} \mathbf{v} \Longrightarrow\left(\lambda_{1}-\lambda_{2}\right) \mathbf{v}=\mathbf{0} \Longrightarrow \lambda_{1}-\lambda_{2}=0 \Longrightarrow \lambda_{1}=\lambda_{2}$.

Proposition 2 Suppose \mathbf{v}_{1} and \mathbf{v}_{2} are eigenvectors of L associated with different eigenvalues λ_{1} and λ_{2}. Then \mathbf{v}_{1} and \mathbf{v}_{2} are linearly independent.

Proof: For any scalar $t \neq 0$ the vector $t \mathbf{v}_{1}$ is also an eigenvector of L associated with the eigenvalue λ_{1}. Since $\lambda_{2} \neq \lambda_{1}$, it follows that $\mathbf{v}_{2} \neq t \mathbf{v}_{1}$. That is, \mathbf{v}_{2} is not a scalar multiple of \mathbf{v}_{1}. Similarly, \mathbf{v}_{1} is not a scalar multiple of \mathbf{v}_{2}.

Let $L: V \rightarrow V$ be a linear operator.
Proposition 3 If $\mathbf{v}_{1}, \mathbf{v}_{2}$, and \mathbf{v}_{3} are eigenvectors of L associated with distinct eigenvalues λ_{1}, λ_{2}, and λ_{3}, then they are linearly independent.
Proof: Suppose that $t_{1} \mathbf{v}_{1}+t_{2} \mathbf{v}_{2}+t_{3} \mathbf{v}_{3}=\mathbf{0}$ for some $t_{1}, t_{2}, t_{3} \in \mathbb{R}$. Then

$$
\begin{gathered}
L\left(t_{1} \mathbf{v}_{1}+t_{2} \mathbf{v}_{2}+t_{3} \mathbf{v}_{3}\right)=\mathbf{0}, \\
t_{1} L\left(\mathbf{v}_{1}\right)+t_{2} L\left(\mathbf{v}_{2}\right)+t_{3} L\left(\mathbf{v}_{3}\right)=\mathbf{0}, \\
t_{1} \lambda_{1} \mathbf{v}_{1}+t_{2} \lambda_{2} \mathbf{v}_{2}+t_{3} \lambda_{3} \mathbf{v}_{3}=\mathbf{0} .
\end{gathered}
$$

It follows that

$$
\begin{gathered}
t_{1} \lambda_{1} \mathbf{v}_{1}+t_{2} \lambda_{2} \mathbf{v}_{2}+t_{3} \lambda_{3} \mathbf{v}_{3}-\lambda_{3}\left(t_{1} \mathbf{v}_{1}+t_{2} \mathbf{v}_{2}+t_{3} \mathbf{v}_{3}\right)=\mathbf{0} \\
\quad \Longrightarrow t_{1}\left(\lambda_{1}-\lambda_{3}\right) \mathbf{v}_{1}+t_{2}\left(\lambda_{2}-\lambda_{3}\right) \mathbf{v}_{2}=\mathbf{0} .
\end{gathered}
$$

By the above, \mathbf{v}_{1} and \mathbf{v}_{2} are linearly independent. Hence $t_{1}\left(\lambda_{1}-\lambda_{3}\right)=t_{2}\left(\lambda_{2}-\lambda_{3}\right)=0 \Longrightarrow t_{1}=t_{2}=0$ Then $t_{3}=0$ as well.

Theorem If $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}$ are eigenvectors of a linear operator L associated with distinct eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$, then $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}$ are linearly independent.

Corollary 1 If $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$ are distinct real numbers, then the functions $e^{\lambda_{1} x}, e^{\lambda_{2} x}, \ldots, e^{\lambda_{k} x}$ are linearly independent.

Proof: Consider a linear operator $D: C^{\infty}(\mathbb{R}) \rightarrow C^{\infty}(\mathbb{R})$ given by $D f=f^{\prime}$. Then $e^{\lambda_{1} x}, \ldots, e^{\lambda_{k} x}$ are eigenfunctions of D associated with distinct eigenvalues $\lambda_{1}, \ldots, \lambda_{k}$. By the theorem, the eigenfunctions are linearly independent.

Corollary 2 If $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}$ are eigenvectors of a matrix A associated with distinct eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$, then $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}$ are linearly independent.

Corollary 3 Let A be an $n \times n$ matrix such that the characteristic equation $\operatorname{det}(A-\lambda I)=0$ has n distinct real roots. Then \mathbb{R}^{n} has a basis consisting of eigenvectors of A.

Proof: Let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ be distinct real roots of the characteristic equation. Any λ_{i} is an eigenvalue of A, hence there is an associated eigenvector \mathbf{v}_{i}. By Corollary 2, vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$ are linearly independent. Therefore they form a basis for \mathbb{R}^{n}.

