Linear Algebra

Lecture 36: Complex eigenvalues and eigenvectors.

MATH 304

Complex eigenvalues and eigenvectors. Symmetric and orthogonal matrices.

Complex numbers

 \mathbb{C} : complex numbers.

Complex number:
$$\boxed{z=x+iy},$$
 where $x,y\in\mathbb{R}$ and $i^2=-1.$

$$i = \sqrt{-1}$$
: imaginary unit

Alternative notation: z = x + yi.

$$x = \text{real part of } z$$
,
 $iy = \text{imaginary part of } z$

$$y = 0 \implies z = x$$
 (real number)
 $x = 0 \implies z = iy$ (purely imaginary number)

We add, subtract, and multiply complex numbers as polynomials in i (but keep in mind that $i^2 = -1$). If $z_1 = x_1 + iy_1$ and $z_2 = x_2 + iy_2$, then

If
$$z_1 = x_1 + iy_1$$
 and $z_2 = x_2 + iy_2$, then
$$z_1 + z_2 = (x_1 + x_2) + i(y_1 + y_2),$$

$$z_1 - z_2 = (x_1 - x_2) + i(y_1 - y_2),$$

Given z = x + iy, the **complex conjugate** of z is $|z| = \sqrt{x^2 + y^2}$

 $z_1z_2=(x_1x_2-y_1y_2)+i(x_1y_2+x_2y_1).$

$$\bar{z} = x - iy$$
. The **modulus** of z is $|z| = \sqrt{x^2 + y^2}$. $z\bar{z} = (x + iy)(x - iy) = x^2 - (iy)^2 = x^2 + y^2 = |z|^2$.

$$z^{-1} = \frac{\bar{z}}{|z|^2}, \qquad (x+iy)^{-1} = \frac{x-iy}{x^2+y^2}.$$

Complex exponentials

Definition. For any $z \in \mathbb{C}$ let

$$e^{z} = 1 + z + \frac{z^{2}}{2!} + \cdots + \frac{z^{n}}{n!} + \cdots$$

Remark. A sequence of complex numbers $z_1 = x_1 + iy_1$, $z_2 = x_2 + iy_2$,... converges to z = x + iy if $x_n \to x$ and $y_n \to y$ as $n \to \infty$.

Theorem 1 If z = x + iy, $x, y \in \mathbb{R}$, then $e^z = e^x(\cos y + i \sin y)$.

In particular, $e^{i\phi} = \cos \phi + i \sin \phi$, $\phi \in \mathbb{R}$.

Theorem 2 $e^{z+w} = e^z \cdot e^w$ for all $z, w \in \mathbb{C}$.

Proposition $e^{i\phi} = \cos \phi + i \sin \phi$ for all $\phi \in \mathbb{R}$.

Proof:
$$e^{i\phi} = 1 + i\phi + \frac{(i\phi)^2}{2!} + \cdots + \frac{(i\phi)^n}{n!} + \cdots$$

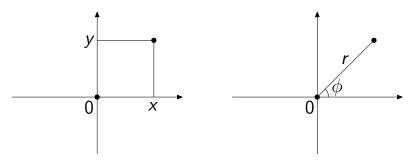
The sequence $1, i, i^2, i^3, \dots, i^n, \dots$ is periodic: $\underbrace{1, i, -1, -i}_{j, \dots, j, \dots, j, \dots}$.

$$e^{i\phi} = 1 - \frac{\phi^2}{2!} + \frac{\phi^4}{4!} - \dots + (-1)^k \frac{\phi^{2k}}{(2k)!} + \dots + i\left(\phi - \frac{\phi^3}{3!} + \frac{\phi^5}{5!} - \dots + (-1)^k \frac{\phi^{2k+1}}{(2k+1)!} + \dots\right)$$

$$= \cos\phi + i\sin\phi.$$

Geometric representation

Any complex number z = x + iy is represented by the vector/point $(x, y) \in \mathbb{R}^2$.



$$x = r \cos \phi, \ y = r \sin \phi \implies z = r(\cos \phi + i \sin \phi) = re^{i\phi}$$

If $z_1 = r_1 e^{i\phi_1}$ and $z_2 = r_2 e^{i\phi_2}$, then $z_1 z_2 = r_1 r_2 e^{i(\phi_1 + \phi_2)}, \ z_1/z_2 = (r_1/r_2)e^{i(\phi_1 - \phi_2)}.$

Fundamental Theorem of Algebra

Any polynomial of degree $n \ge 1$, with complex coefficients, has exactly n roots (counting with multiplicities).

Equivalently, if

$$p(z) = a_n z^n + a_{n-1} z^{n-1} + \cdots + a_1 z + a_0,$$

where $a_i \in \mathbb{C}$ and $a_n \neq 0$, then there exist complex numbers z_1, z_2, \ldots, z_n such that

$$p(z) = a_n(z - z_1)(z - z_2) \dots (z - z_n).$$

Complex eigenvalues and eigenvectors

Example.
$$A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$
. $det(A - \lambda I) = \lambda^2 + 1$.

Characteristic roots: $\lambda_1 = i$ and $\lambda_2 = -i$.

Associated eigenvectors:
$$\mathbf{v}_1 = \begin{pmatrix} 1 \\ -i \end{pmatrix}$$
 and $\mathbf{v}_2 = \begin{pmatrix} 1 \\ i \end{pmatrix}$.

$$\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ -i \end{pmatrix} = \begin{pmatrix} i \\ 1 \end{pmatrix} = i \begin{pmatrix} 1 \\ -i \end{pmatrix},$$

$$\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ i \end{pmatrix} = \begin{pmatrix} -i \\ 1 \end{pmatrix} = -i \begin{pmatrix} 1 \\ i \end{pmatrix}.$$

 \mathbf{v}_1 , \mathbf{v}_2 is a basis of eigenvectors. *In which space?*

Complexification

Instead of the real vector space \mathbb{R}^2 , we consider a complex vector space \mathbb{C}^2 (all complex numbers are admissible as scalars).

The linear operator $f: \mathbb{R}^2 \to \mathbb{R}^2$, $f(\mathbf{x}) = A\mathbf{x}$ is extended to a *complex linear operator* $F: \mathbb{C}^2 \to \mathbb{C}^2$, $F(\mathbf{x}) = A\mathbf{x}$.

The vectors $\mathbf{v}_1 = (1, -i)$ and $\mathbf{v}_2 = (1, i)$ form a basis for \mathbb{C}^2 .

 \mathbb{C}^2 is also a real vector space (of real dimension 4). The standard real basis for \mathbb{C}^2 is $\mathbf{e}_1=(1,0)$, $\mathbf{e}_2=(0,1)$, $i\mathbf{e}_1=(i,0)$, $i\mathbf{e}_2=(0,i)$. The matrix of the operator F with respect to this basis has block structure $\begin{pmatrix} A & O \\ O & A \end{pmatrix}$.

Dot product of complex vectors

Dot product of real vectors

$$\mathbf{x} = (x_1, \ldots, x_n), \ \mathbf{y} = (y_1, \ldots, y_n) \in \mathbb{R}^n$$
:

$$\mathbf{x}\cdot\mathbf{y}=x_1y_1+x_2y_2+\cdots+x_ny_n.$$

Dot product of complex vectors

$$\mathbf{x} = (x_1, \dots, x_n), \ \mathbf{y} = (y_1, \dots, y_n) \in \mathbb{C}^n$$
:
 $\mathbf{x} \cdot \mathbf{v} = x_1 \overline{v_1} + x_2 \overline{v_2} + \dots + x_n \overline{v_n}$.

If
$$z = r + it$$
 $(t, s \in \mathbb{R})$ then $\overline{z} = r - it$, $z\overline{z} = r^2 + t^2 = |z|^2$.

Hence
$$\mathbf{x} \cdot \mathbf{x} = |x_1|^2 + |x_2|^2 + \dots + |x_n|^2 \ge 0$$
.
Also, $\mathbf{x} \cdot \mathbf{x} = 0$ if and only if $\mathbf{x} = \mathbf{0}$.

The norm is defined by $\|\mathbf{x}\| = \sqrt{\mathbf{x} \cdot \mathbf{x}}$.

Normal matrices

Definition. An $n \times n$ matrix A is called

- symmetric if $A^T = A$;
- orthogonal if $AA^T = A^TA = I$, i.e., $A^T = A^{-1}$;
- **normal** if $AA^T = A^TA$.

Theorem Let A be an $n \times n$ matrix with real entries. Then

- (a) A is normal \iff there exists an orthonormal basis for \mathbb{C}^n consisting of eigenvectors of A;
- **(b)** A is symmetric \iff there exists an orthonormal basis for \mathbb{R}^n consisting of eigenvectors of A.

Example. $A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 3 & 0 \\ 1 & 0 & 1 \end{pmatrix}$.

- A has three eigenvalues: 0, 2, and 3.
- Associated eigenvectors are $\mathbf{v}_1 = (-1, 0, 1)$,
- $\mathbf{v}_2 = (1,0,1)$, and $\mathbf{v}_3 = (0,1,0)$, respectively.
- Vectors $\frac{1}{\sqrt{2}}\mathbf{v}_1, \frac{1}{\sqrt{2}}\mathbf{v}_2, \mathbf{v}_3$ form an orthonormal basis for \mathbb{R}^3

Theorem Suppose A is a normal matrix. Then for any $\mathbf{x} \in \mathbb{C}^n$ and $\lambda \in \mathbb{C}$ one has

$$A\mathbf{x} = \lambda \mathbf{x} \iff A^T \mathbf{x} = \overline{\lambda} \mathbf{x}.$$

Thus any normal matrix A shares with A^T all real eigenvalues and the corresponding eigenvectors. Also, $A\mathbf{x} = \lambda \mathbf{x} \iff A\overline{\mathbf{x}} = \overline{\lambda} \, \overline{\mathbf{x}}$ for any matrix A with real entries.

Corollary All eigenvalues λ of a symmetric matrix are real $(\overline{\lambda} = \lambda)$. All eigenvalues λ of an orthogonal matrix satisfy $\overline{\lambda} = \lambda^{-1} \iff |\lambda| = 1$.

Why are orthogonal matrices called so?

Theorem Given an $n \times n$ matrix A, the following conditions are equivalent:

- (i) A is orthogonal: $A^T = A^{-1}$;
- (ii) columns of A form an orthonormal basis for \mathbb{R}^n ;
- (iii) rows of A form an orthonormal basis for \mathbb{R}^n .

Proof: Entries of the matrix A^TA are dot products of columns of A. Entries of AA^T are dot products of rows of A.

Thus an orthogonal matrix is the transition matrix from one orthonormal basis to another.

Example. $A_{\phi} = \begin{pmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{pmatrix}$.

•
$$A_{\phi}A_{\psi} = A_{\phi+\psi}$$

• $A_{\phi}^{-1} = A_{-\phi} = A_{\phi}^{T}$

- A_{ϕ} is orthogonal
- $\det(A_{\phi} \lambda I) = (\cos \phi \lambda)^2 + \sin^2 \phi$.
- Eigenvalues: $\lambda_1 = \cos \phi + i \sin \phi = e^{i\phi}$,

$$\lambda_2 = \cos \phi - i \sin \phi = e^{-i\phi}.$$

- Associated eigenvectors: $\mathbf{v}_1 = (1, -i)$, $\mathbf{v}_2 = (1, i).$
- Vectors $\frac{1}{\sqrt{2}}\mathbf{v}_1$ and $\frac{1}{\sqrt{2}}\mathbf{v}_2$ form an orthonormal basis for \mathbb{C}^2

Consider a linear operator $L : \mathbb{R}^n \to \mathbb{R}^n$, $L(\mathbf{x}) = A\mathbf{x}$, where A is an $n \times n$ orthogonal matrix.

Theorem There exists an orthonormal basis for \mathbb{R}^n such that the matrix of L relative to this basis has a diagonal block structure

$$\begin{pmatrix} D_{\pm 1} & O & \dots & O \\ O & R_1 & \dots & O \\ \vdots & \vdots & \ddots & \vdots \\ O & O & \dots & R_k \end{pmatrix},$$

where $D_{\pm 1}$ is a diagonal matrix whose diagonal entries are equal to 1 or -1, and

$$R_j = \begin{pmatrix} \cos \phi_j & -\sin \phi_j \\ \sin \phi_i & \cos \phi_i \end{pmatrix}, \quad \phi_j \in \mathbb{R}.$$