Sample problems for Test 1

Any problem may be altered or replaced by a different one!

Problem $1(15$ pts.) Find a quadratic polynomial $p(x)$ such that $p(1)=1, p(2)=3$, and $p(3)=7$.

Problem 2 (25 pts.) Let $A=\left(\begin{array}{rrrr}1 & -2 & 4 & 1 \\ 2 & 3 & 2 & 0 \\ 2 & 0 & -1 & 1 \\ 2 & 0 & 0 & 1\end{array}\right)$.
(i) Evaluate the determinant of the matrix A.
(ii) Find the inverse matrix A^{-1}.

Problem 3 (20 pts.) Determine which of the following subsets of \mathbb{R}^{3} are subspaces. Briefly explain.
(i) The set S_{1} of vectors $(x, y, z) \in \mathbb{R}^{3}$ such that $x y z=0$.
(ii) The set S_{2} of vectors $(x, y, z) \in \mathbb{R}^{3}$ such that $x+y+z=0$.
(iii) The set S_{3} of vectors $(x, y, z) \in \mathbb{R}^{3}$ such that $y^{2}+z^{2}=0$.
(iv) The set S_{4} of vectors $(x, y, z) \in \mathbb{R}^{3}$ such that $y^{2}-z^{2}=0$.

Problem 4 (30 pts.) Let $B=\left(\begin{array}{rrrr}0 & -1 & 4 & 1 \\ 1 & 1 & 2 & -1 \\ -3 & 0 & -1 & 0 \\ 2 & -1 & 0 & 1\end{array}\right)$.
(i) Find the rank and the nullity of the matrix B.
(ii) Find a basis for the row space of B, then extend this basis to a basis for \mathbb{R}^{4}.
(iii) Find a basis for the nullspace of B.

Bonus Problem 5 (15 pts.) Show that the functions $f_{1}(x)=x, f_{2}(x)=x e^{x}$, and $f_{3}(x)=e^{-x}$ are linearly independent in the vector space $C^{\infty}(\mathbb{R})$.

Bonus Problem 6 (15 pts.) Let V be a finite-dimensional vector space and V_{0} be a proper subspace of V (where proper means that $V_{0} \neq V$). Prove that $\operatorname{dim} V_{0}<\operatorname{dim} V$.

