MATH 304
 Linear Algebra

Lecture 4:

System with a parameter.
Applications of systems of linear equations.

System with a parameter.
$\left\{\begin{array}{l}y+3 z=0 \\ x+y-2 z=0 \\ x+2 y+a z=0\end{array}\right.$

$$
(a \in \mathbb{R})
$$

The system is homogeneous (all right-hand sides are zeros). Therefore it is consistent ($x=y=z=0$ is a solution).
Augmented matrix: $\left(\begin{array}{rrr|r}0 & 1 & 3 & 0 \\ 1 & 1 & -2 & 0 \\ 1 & 2 & a & 0\end{array}\right)$
Since the 1st row cannot serve as a pivotal one, we interchange it with the 2 nd row:

$$
\left(\begin{array}{rrr|r}
0 & 1 & 3 & 0 \\
1 & 1 & -2 & 0 \\
1 & 2 & a & 0
\end{array}\right) \rightarrow\left(\begin{array}{rrr|r}
1 & 1 & -2 & 0 \\
0 & 1 & 3 & 0 \\
1 & 2 & a & 0
\end{array}\right)
$$

Now we can start the elimination.
First subtract the 1st row from the 3 rd row:

$$
\left(\begin{array}{rrr|r}
1 & 1 & -2 & 0 \\
0 & 1 & 3 & 0 \\
1 & 2 & a & 0
\end{array}\right) \rightarrow\left(\begin{array}{ccc|l}
1 & 1 & -2 & 0 \\
0 & 1 & 3 & 0 \\
0 & 1 & a+2 & 0
\end{array}\right)
$$

The 2 nd row is our new pivotal row.
Subtract the 2nd row from the 3rd row:

$$
\left(\begin{array}{ccc|c}
1 & 1 & -2 & 0 \\
0 & 1 & 3 & 0 \\
0 & 1 & a+2 & 0
\end{array}\right) \rightarrow\left(\begin{array}{ccc|c}
1 & 1 & -2 & 0 \\
0 & 1 & 3 & 0 \\
0 & 0 & a-1 & 0
\end{array}\right)
$$

At this point row reduction splits into two cases.
Case 1: $a \neq 1$. In this case, multiply the 3rd row by $(a-1)^{-1}$:
$\left(\begin{array}{ccc|c}1 & 1 & -2 & 0 \\ 0 & 1 & 3 & 0 \\ 0 & 0 & a-1 & 0\end{array}\right) \rightarrow\left(\begin{array}{ccc|c}\boxed{1} & 1 & -2 & 0 \\ 0 & \boxed{1} & 3 & 0 \\ 0 & 0 & 1 & 0\end{array}\right)$
The matrix is converted into row echelon form.
We proceed towards reduced row echelon form.
Subtract 3 times the 3rd row from the 2nd row:

$$
\left(\begin{array}{rrr|r}
1 & 1 & -2 & 0 \\
0 & 1 & 3 & 0 \\
0 & 0 & 1 & 0
\end{array}\right) \rightarrow\left(\begin{array}{rrr|r}
1 & 1 & -2 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right)
$$

Add 2 times the 3 rd row to the 1 st row:

$$
\left(\begin{array}{rrr|r}
1 & 1 & -2 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right) \rightarrow\left(\begin{array}{lll|l}
1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right)
$$

Finally, subtract the 2 nd row from the 1st row:

$$
\left(\begin{array}{lll|l}
1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right) \rightarrow\left(\begin{array}{ccc|c}
\boxed{1} & 0 & 0 & 0 \\
0 & \boxed{1} & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right)
$$

Thus $x=y=z=0$ is the only solution.

Case 2: $a=1$. In this case, the matrix is already in row echelon form:
$\left(\begin{array}{rcr|r}\boxed{1} & 1 & -2 & 0 \\ 0 & 1 & 3 & 0 \\ 0 & 0 & 0 & 0\end{array}\right)$
To get reduced row echelon form, subtract the 2 nd row from the 1st row:

$$
\left(\begin{array}{rrr|r}
1 & 1 & -2 & 0 \\
0 & 1 & 3 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \rightarrow\left(\begin{array}{rrr|r}
\boxed{1} & 0 & -5 & 0 \\
0 & \boxed{1} & 3 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

z is a free variable.

$$
\left\{\begin{array} { l }
{ x - 5 z = 0 } \\
{ y + 3 z = 0 }
\end{array} \Longleftrightarrow \left\{\begin{array}{l}
x=5 z \\
y=-3 z
\end{array}\right.\right.
$$

System of linear equations:
$\left\{\begin{array}{l}y+3 z=0 \\ x+y-2 z=0 \\ x+2 y+a z=0\end{array}\right.$
Solution: If $a \neq 1$ then $(x, y, z)=(0,0,0)$;
if $a=1$ then $(x, y, z)=(5 t,-3 t, t), t \in \mathbb{R}$.

Applications of systems of linear equations

Problem 1. Find the point of intersection of the lines $x-y=-2$ and $2 x+3 y=6$ in \mathbb{R}^{2}.

$$
\left\{\begin{array}{l}
x-y=-2 \\
2 x+3 y=6
\end{array}\right.
$$

Problem 2. Find the point of intersection of the planes $x-y=2,2 x-y-z=3$, and $x+y+z=6$ in \mathbb{R}^{3}.

$$
\left\{\begin{array}{l}
x-y=2 \\
2 x-y-z=3 \\
x+y+z=6
\end{array}\right.
$$

Method of undetermined coefficients often involves solving systems of linear equations.

Problem 3. Find a quadratic polynomial $p(x)$ such that $p(1)=4, p(2)=3$, and $p(3)=4$.

Suppose that $p(x)=a x^{2}+b x+c$. Then $p(1)=a+b+c, p(2)=4 a+2 b+c$, $p(3)=9 a+3 b+c$.

$$
\left\{\begin{array}{l}
a+b+c=4 \\
4 a+2 b+c=3 \\
9 a+3 b+c=4
\end{array}\right.
$$

Method of undetermined coefficients often involves solving systems of linear equations.

Problem 3. Find a quadratic polynomial $p(x)$
such that $p(1)=4, p(2)=3$, and $p(3)=4$.
Alternative choice of coefficients: $p(x)=\tilde{a}+\tilde{b} x+\tilde{c} x^{2}$.
Then $p(1)=\tilde{a}+\tilde{b}+\tilde{c}, \quad p(2)=\tilde{a}+2 \tilde{b}+4 \tilde{c}$, $p(3)=\tilde{a}+3 \tilde{b}+9 \tilde{c}$.

$$
\left\{\begin{array}{l}
\tilde{a}+\tilde{b}+\tilde{c}=4 \\
\tilde{a}+2 \tilde{b}+4 \tilde{c}=3 \\
\tilde{a}+3 \tilde{b}+9 \tilde{c}=4
\end{array}\right.
$$

Problem 4. Evaluate $\int_{0}^{1} \frac{x(x-3)}{(x-1)^{2}(x+2)} d x$
To evaluate the integral, we need to decompose the rational function $R(x)=\frac{x(x-3)}{(x-1)^{2}(x+2)}$ into a sum of partial fractions:

$$
\begin{aligned}
& R(x)=\frac{a}{x-1}+\frac{b}{(x-1)^{2}}+\frac{c}{x+2} \\
&=\frac{a(x-1)(x+2)+b(x+2)+c(x-1)^{2}}{(x-1)^{2}(x+2)} \\
&=\frac{(a+c) x^{2}+(a+b-2 c) x+(-2 a+2 b+c)}{(x-1)^{2}(x+2)} . \\
&\left\{\begin{array}{l}
a+c=1 \\
a+b-2 c=-3 \\
-2 a+2 b+c=0
\end{array}\right.
\end{aligned}
$$

Traffic flow

Problem. Determine the amount of traffic between each of the four intersections.

$$
x_{1}=?, \quad x_{2}=?, \quad x_{3}=?, \quad x_{4}=?
$$

At each intersection, the incoming traffic has to match the outgoing traffic.

Intersection $A: \quad x_{4}+610=x_{1}+450$
Intersection $B: \quad x_{1}+400=x_{2}+640$
Intersection $C: \quad x_{2}+600=x_{3}$
Intersection D: $\quad x_{3}=x_{4}+520$

$$
\left\{\begin{array}{l}
x_{4}+610=x_{1}+450 \\
x_{1}+400=x_{2}+640 \\
x_{2}+600=x_{3} \\
x_{3}=x_{4}+520
\end{array}\right.
$$

$$
\Longleftrightarrow\left\{\begin{array}{l}
-x_{1}+x_{4}=-160 \\
x_{1}-x_{2}=240 \\
x_{2}-x_{3}=-600 \\
x_{3}-x_{4}=520
\end{array}\right.
$$

Electrical network

Problem. Determine the amount of current in each branch of the network.

$$
i_{1}=?, \quad i_{2}=?, \quad i_{3}=?
$$

Kirchhof's law \#1 (junction rule): at every node the sum of the incoming currents equals the sum of the outgoing currents.

Node A : $\quad i_{1}=i_{2}+i_{3}$
Node $B: \quad i_{2}+i_{3}=i_{1}$

Electrical network

Kirchhof's law \#2 (loop rule): around every loop the algebraic sum of all voltages is zero.

Ohm's law: for every resistor the voltage drop E, the current i, and the resistance R satisfy $E=i R$.

$$
\begin{aligned}
\text { Top loop: } & 9-i_{2}-4 i_{1}=0 \\
\text { Bottom loop: } & 4-2 i_{3}+i_{2}-3 i_{3}=0 \\
\text { Big loop: } & 4-2 i_{3}-4 i_{1}+9-3 i_{3}=0
\end{aligned}
$$

Remark. The 3rd equation is the sum of the first two equations.

$$
\begin{aligned}
& \left\{\begin{array}{l}
i_{1}=i_{2}+i_{3} \\
9-i_{2}-4 i_{1}=0 \\
4-2 i_{3}+i_{2}-3 i_{3}=0
\end{array}\right. \\
& \Longleftrightarrow\left\{\begin{array}{l}
i_{1}-i_{2}-i_{3}=0 \\
4 i_{1}+i_{2}=9 \\
-i_{2}+5 i_{3}=4
\end{array}\right.
\end{aligned}
$$

