MATH 304
 Linear Algebra

Lecture 7:
Inverse matrix (continued).

Identity matrix

Definition. The identity matrix (or unit matrix) is a diagonal matrix with all diagonal entries equal to 1 . The $n \times n$ identity matrix is denoted I_{n} or simply I.

$$
I_{1}=(1), \quad I_{2}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \quad I_{3}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) .
$$

In general, $\quad I=\left(\begin{array}{cccc}1 & 0 & \ldots & 0 \\ 0 & 1 & \ldots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \ldots & 1\end{array}\right)$.
Theorem. Let A be an arbitrary $m \times n$ matrix.
Then $I_{m} A=A I_{n}=A$.

Inverse matrix

Definition. Let A be an $n \times n$ matrix. The inverse of A is an $n \times n$ matrix, denoted A^{-1}, such that

$$
A A^{-1}=A^{-1} A=l
$$

If A^{-1} exists then the matrix A is called invertible. Otherwise A is called singular.

Let A and B be $n \times n$ matrices. If A is invertible then we can divide B by A :
left division: $A^{-1} B$, right division: $B A^{-1}$.
Remark. There is no notation for the matrix division and the notion is not really used.

Inverting diagonal matrices

Theorem A diagonal matrix $D=\operatorname{diag}\left(d_{1}, \ldots, d_{n}\right)$ is invertible if and only if all diagonal entries are nonzero: $d_{i} \neq 0$ for $1 \leq i \leq n$.
If D is invertible then $D^{-1}=\operatorname{diag}\left(d_{1}^{-1}, \ldots, d_{n}^{-1}\right)$.

$$
\left(\begin{array}{cccc}
d_{1} & 0 & \ldots & 0 \\
0 & d_{2} & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & d_{n}
\end{array}\right)^{-1}=\left(\begin{array}{cccc}
d_{1}^{-1} & 0 & \ldots & 0 \\
0 & d_{2}^{-1} & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & d_{n}^{-1}
\end{array}\right)
$$

Inverting diagonal matrices

Theorem A diagonal matrix $D=\operatorname{diag}\left(d_{1}, \ldots, d_{n}\right)$ is invertible if and only if all diagonal entries are nonzero: $d_{i} \neq 0$ for $1 \leq i \leq n$.
If D is invertible then $D^{-1}=\operatorname{diag}\left(d_{1}^{-1}, \ldots, d_{n}^{-1}\right)$.
Proof: If all $d_{i} \neq 0$ then, clearly, $\operatorname{diag}\left(d_{1}, \ldots, d_{n}\right) \operatorname{diag}\left(d_{1}^{-1}, \ldots, d_{n}^{-1}\right)=\operatorname{diag}(1, \ldots, 1)=I$, $\operatorname{diag}\left(d_{1}^{-1}, \ldots, d_{n}^{-1}\right) \operatorname{diag}\left(d_{1}, \ldots, d_{n}\right)=\operatorname{diag}(1, \ldots, 1)=l$.

Now suppose that $d_{i}=0$ for some i. Then for any $n \times n$ matrix B the i th row of the matrix $D B$ is a zero row. Hence $D B \neq 1$.

Inverting 2×2 matrices

Definition. The determinant of a 2×2 matrix $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ is $\operatorname{det} A=a d-b c$.

Theorem A matrix $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ is invertible if and only if $\operatorname{det} A \neq 0$.

If $\operatorname{det} A \neq 0$ then

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)^{-1}=\frac{1}{a d-b c}\left(\begin{array}{rr}
d & -b \\
-c & a
\end{array}\right)
$$

Theorem A matrix $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ is invertible if and only if $\operatorname{det} A \neq 0$. If $\operatorname{det} A \neq 0$ then

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)^{-1}=\frac{1}{a d-b c}\left(\begin{array}{rr}
d & -b \\
-c & a
\end{array}\right)
$$

Proof: Let $B=\left(\begin{array}{rr}d & -b \\ -c & a\end{array}\right)$. Then

$$
A B=B A=\left(\begin{array}{cc}
a d-b c & 0 \\
0 & a d-b c
\end{array}\right)=(a d-b c) l_{2} .
$$

In the case $\operatorname{det} A \neq 0$, we have $A^{-1}=(\operatorname{det} A)^{-1} B$. In the case $\operatorname{det} A=0$, the matrix A is not invertible as otherwise $A B=O \Longrightarrow A^{-1}(A B)=A^{-1} O=O$
$\Longrightarrow\left(A^{-1} A\right) B=0 \Longrightarrow I_{2} B=O \Longrightarrow B=O$
$\Longrightarrow A=O$, but the zero matrix is singular.

Problem. Solve a system $\left\{\begin{array}{l}4 x+3 y=5, \\ 3 x+2 y=-1 .\end{array}\right.$
This system is equivalent to a matrix equation $A \mathbf{x}=\mathbf{b}$,
where $A=\left(\begin{array}{ll}4 & 3 \\ 3 & 2\end{array}\right), \quad \mathbf{x}=\binom{x}{y}, \quad \mathbf{b}=\binom{5}{-1}$.
We have $\operatorname{det} A=-1 \neq 0$. Hence A is invertible.

$$
\begin{aligned}
& A \mathbf{x}=\mathbf{b} \Longrightarrow A^{-1}(A \mathbf{x})=A^{-1} \mathbf{b} \Longrightarrow\left(A^{-1} A\right) \mathbf{x}=A^{-1} \mathbf{b} \\
& \Longrightarrow \mathbf{x}=A^{-1} \mathbf{b} .
\end{aligned}
$$

Conversely, $\mathbf{x}=A^{-1} \mathbf{b} \Longrightarrow A \mathbf{x}=A\left(A^{-1} \mathbf{b}\right)=\left(A A^{-1}\right) \mathbf{b}=\mathbf{b}$.

$$
\binom{x}{y}=\left(\begin{array}{ll}
4 & 3 \\
3 & 2
\end{array}\right)^{-1}\binom{5}{-1}=\frac{1}{-1}\left(\begin{array}{rr}
2 & -3 \\
-3 & 4
\end{array}\right)\binom{5}{-1}=\binom{-13}{19}
$$

System of n linear equations in n variables:

$$
\left\{\begin{array}{c}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}=b_{2} \\
\cdots \cdots \\
a_{n 1} x_{1}+a_{n 2} x_{2}+\cdots+a_{n n} x_{n}=b_{n}
\end{array} \Longleftrightarrow A \mathbf{x}=\mathbf{b}\right.
$$

where
$A=\left(\begin{array}{cccc}a_{11} & a_{12} & \ldots & a_{1 n} \\ a_{21} & a_{22} & \ldots & a_{2 n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n 1} & a_{n 2} & \ldots & a_{n n}\end{array}\right), \quad \mathbf{x}=\left(\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{n}\end{array}\right), \quad \mathbf{b}=\left(\begin{array}{c}b_{1} \\ b_{2} \\ \vdots \\ b_{n}\end{array}\right)$.
Theorem If the matrix A is invertible then the system has a unique solution, which is $\mathbf{x}=A^{-1} \mathbf{b}$.

General results on inverse matrices

Theorem 1 Given an $n \times n$ matrix A, the following conditions are equivalent:
(i) A is invertible;
(ii) $\mathbf{x}=\mathbf{0}$ is the only solution of the matrix equation $A \mathbf{x}=\mathbf{0}$;
(iii) the matrix equation $A \mathbf{x}=\mathbf{b}$ has a unique solution for any n-dimensional column vector \mathbf{b};
(iv) the row echelon form of A has no zero rows;
(v) the reduced row echelon form of A is the identity matrix.

Theorem 2 Suppose that a sequence of elementary row operations converts a matrix A into the identity matrix.

Then the same sequence of operations converts the identity matrix into the inverse matrix A^{-1}.

Row echelon form of a square matrix:

invertible case

noninvertible case

For any matrix in row echelon form, the number of columns with leading entries equals the number of rows with leading entries. For a square matrix, also the number of columns without leading entries (i.e., the number of free variables in a related system of linear equations) equals the number of rows without leading entries (i.e., zero rows).

Row echelon form of a square matrix:

invertible case

noninvertible case

Hence the row echelon form of a square matrix A is either strict triangular or else it has a zero row. In the former case, the equation $A \mathbf{x}=\mathbf{b}$ always has a unique solution. In the latter case, $A \mathbf{x}=\mathbf{b}$ never has a unique solution. Also, in the former case the reduced row echelon form of A is I.

Example. $A=\left(\begin{array}{rrr}3 & -2 & 0 \\ 1 & 0 & 1 \\ -2 & 3 & 0\end{array}\right)$.
To check whether A is invertible, we convert it to row echelon form.
Interchange the 1st row with the 2 nd row:
$\left(\begin{array}{rrr}1 & 0 & 1 \\ 3 & -2 & 0 \\ -2 & 3 & 0\end{array}\right)$
Add -3 times the 1st row to the 2 nd row:
$\left(\begin{array}{rrr}1 & 0 & 1 \\ 0 & -2 & -3 \\ -2 & 3 & 0\end{array}\right)$

$$
\left(\begin{array}{rrr}
1 & 0 & 1 \\
0 & -2 & -3 \\
-2 & 3 & 0
\end{array}\right)
$$

Add 2 times the 1st row to the 3 rd row:
$\left(\begin{array}{rrr}1 & 0 & 1 \\ 0 & -2 & -3 \\ 0 & 3 & 2\end{array}\right)$
Multiply the 2 nd row by -0.5 :
$\left(\begin{array}{ccc}1 & 0 & 1 \\ 0 & 1 & 1.5 \\ 0 & 3 & 2\end{array}\right)$
$\left(\begin{array}{ccc}1 & 0 & 1 \\ 0 & 1 & 1.5 \\ 0 & 3 & 2\end{array}\right)$
Add -3 times the 2 nd row to the 3rd row:
$\left(\begin{array}{ccc}1 & 0 & 1 \\ 0 & 1 & 1.5 \\ 0 & 0 & -2.5\end{array}\right)$
Multiply the 3 rd row by -0.4 :
$\left(\begin{array}{ccc}1 & 0 & 1 \\ 0 & 1 & 1.5 \\ 0 & 0 & 1\end{array}\right)$
$\left(\begin{array}{ccc}\boxed{1} & 0 & 1 \\ 0 & \boxed{1} & 1.5 \\ 0 & 0 & \boxed{1}\end{array}\right)$
We already know that the matrix A is invertible.
Let's proceed towards reduced row echelon form.
Add -1.5 times the 3 rd row to the 2 nd row:
$\left(\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$
Add -1 times the 3 rd row to the 1 st row:
$\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$

To obtain A^{-1}, we need to apply the following sequence of elementary row operations to the identity matrix:

- interchange the 1 st row with the 2 nd row,
- add -3 times the 1 st row to the 2 nd row,
- add 2 times the 1 st row to the 3 rd row,
- multiply the 2 nd row by -0.5 ,
- add -3 times the 2 nd row to the 3 rd row,
- multiply the 3 rd row by -0.4 ,
- add -1.5 times the 3 rd row to the 2 nd row,
- add -1 times the 3 rd row to the 1 st row.

A convenient way to compute the inverse matrix A^{-1} is to merge the matrices A and I into one 3×6 matrix $(A \mid I)$, and apply elementary row operations to this new matrix.
$A=\left(\begin{array}{rrr}3 & -2 & 0 \\ 1 & 0 & 1 \\ -2 & 3 & 0\end{array}\right), \quad I=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$
$(A \mid I)=\left(\begin{array}{rrr|rrr}3 & -2 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ -2 & 3 & 0 & 0 & 0 & 1\end{array}\right)$

$$
\left(\begin{array}{rrr|rrr}
3 & -2 & 0 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 \\
-2 & 3 & 0 & 0 & 0 & 1
\end{array}\right)
$$

Interchange the 1st row with the 2 nd row:

$$
\left(\begin{array}{rrr|rrr}
1 & 0 & 1 & 0 & 1 & 0 \\
3 & -2 & 0 & 1 & 0 & 0 \\
-2 & 3 & 0 & 0 & 0 & 1
\end{array}\right)
$$

Add -3 times the 1 st row to the 2 nd row:

$$
\left(\begin{array}{rrr|rrr}
1 & 0 & 1 & 0 & 1 & 0 \\
0 & -2 & -3 & 1 & -3 & 0 \\
-2 & 3 & 0 & 0 & 0 & 1
\end{array}\right)
$$

$$
\left(\begin{array}{rrr|rrr}
1 & 0 & 1 & 0 & 1 & 0 \\
0 & -2 & -3 & 1 & -3 & 0 \\
-2 & 3 & 0 & 0 & 0 & 1
\end{array}\right)
$$

Add 2 times the 1 st row to the 3 rd row:

$$
\left(\begin{array}{rrr|rrr}
1 & 0 & 1 & 0 & 1 & 0 \\
0 & -2 & -3 & 1 & -3 & 0 \\
0 & 3 & 2 & 0 & 2 & 1
\end{array}\right)
$$

Multiply the 2nd row by -0.5 :
$\left(\begin{array}{ccc|ccc}1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1.5 & -0.5 & 1.5 & 0 \\ 0 & 3 & 2 & 0 & 2 & 1\end{array}\right)$
$\left(\begin{array}{ccc|ccc}1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1.5 & -0.5 & 1.5 & 0 \\ 0 & 3 & 2 & 0 & 2 & 1\end{array}\right)$
Add -3 times the 2 nd row to the 3rd row:
$\left(\begin{array}{rrr|rrr}1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1.5 & -0.5 & 1.5 & 0 \\ 0 & 0 & -2.5 & 1.5 & -2.5 & 1\end{array}\right)$
Multiply the 3rd row by -0.4 :
$\left(\begin{array}{ccc|ccc}1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1.5 & -0.5 & 1.5 & 0 \\ 0 & 0 & 1 & -0.6 & 1 & -0.4\end{array}\right)$
$\left(\begin{array}{ccc|ccc}1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1.5 & -0.5 & 1.5 & 0 \\ 0 & 0 & 1 & -0.6 & 1 & -0.4\end{array}\right)$
Add -1.5 times the 3 rd row to the 2 nd row:
$\left(\begin{array}{ccc|ccc}1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0.4 & 0 & 0.6 \\ 0 & 0 & 1 & -0.6 & 1 & -0.4\end{array}\right)$
Add -1 times the 3 rd row to the 1 st row:
$\left(\begin{array}{lll|rrr}1 & 0 & 0 & 0.6 & 0 & 0.4 \\ 0 & 1 & 0 & 0.4 & 0 & 0.6 \\ 0 & 0 & 1 & -0.6 & 1 & -0.4\end{array}\right)=\left(I \mid A^{-1}\right)$

Thus

$$
\left(\begin{array}{rrr}
3 & -2 & 0 \\
1 & 0 & 1 \\
-2 & 3 & 0
\end{array}\right)^{-1}=\left(\begin{array}{rrr}
\frac{3}{5} & 0 & \frac{2}{5} \\
\frac{2}{5} & 0 & \frac{3}{5} \\
-\frac{3}{5} & 1 & -\frac{2}{5}
\end{array}\right) .
$$

That is,

$$
\begin{aligned}
& \left(\begin{array}{rrr}
3 & -2 & 0 \\
1 & 0 & 1 \\
-2 & 3 & 0
\end{array}\right)\left(\begin{array}{rrr}
\frac{3}{5} & 0 & \frac{2}{5} \\
\frac{2}{5} & 0 & \frac{3}{5} \\
-\frac{3}{5} & 1 & -\frac{2}{5}
\end{array}\right)=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right), \\
& \left(\begin{array}{rrr}
\frac{3}{5} & 0 & \frac{2}{5} \\
\frac{2}{5} & 0 & \frac{3}{5} \\
-\frac{3}{5} & 1 & -\frac{2}{5}
\end{array}\right)\left(\begin{array}{rrr}
3 & -2 & 0 \\
1 & 0 & 1 \\
-2 & 3 & 0
\end{array}\right)=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) .
\end{aligned}
$$

Why does it work?

Converting the matrix $(A \mid I)=\left(\begin{array}{rrr|rrr}3 & -2 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ -2 & 3 & 0 & 0 & 0 & 1\end{array}\right)$
into reduced row echelon form is equivalent to converting three matrices

$$
\left(\begin{array}{rrr|r}
3 & -2 & 0 & 1 \\
1 & 0 & 1 & 0 \\
-2 & 3 & 0 & 0
\end{array}\right),\left(\begin{array}{rrr|r}
3 & -2 & 0 & 0 \\
1 & 0 & 1 & 1 \\
-2 & 3 & 0 & 0
\end{array}\right),\left(\begin{array}{rrr|r}
3 & -2 & 0 & 0 \\
1 & 0 & 1 & 0 \\
-2 & 3 & 0 & 1
\end{array}\right) .
$$

The latter are augmented matrices of certain systems of linear equations. In the matrix form, $A \mathbf{x}=\mathbf{e}_{1}, A \mathbf{x}=\mathbf{e}_{2}$, and $A \mathbf{x}=\mathbf{e}_{3}$, where $\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}$ are consecutive columns of I.
Suppose column vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ are solutions of these systems and let $B=\left(\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right)$. Then

$$
A B=A\left(\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right)=\left(A \mathbf{v}_{1}, A \mathbf{v}_{2}, A \mathbf{v}_{3}\right)=\left(\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\right)=I .
$$

