MATH 304 Linear Algebra Lecture 11:

Vector spaces.

Linear operations on vectors

Let $\mathbf{x} = (x_1, x_2, \dots, x_n)$ and $\mathbf{y} = (y_1, y_2, \dots, y_n)$ be *n*-dimensional vectors, and $r \in \mathbb{R}$ be a scalar.

Vector sum: $\mathbf{x} + \mathbf{y} = (x_1 + y_1, x_2 + y_2, \dots, x_n + y_n)$ Scalar multiple: $r\mathbf{x} = (rx_1, rx_2, \dots, rx_n)$ Zero vector: $\mathbf{0} = (0, 0, \dots, 0)$ Negative of a vector: $-\mathbf{y} = (-y_1, -y_2, \dots, -y_n)$ Vector difference: $\mathbf{x} - \mathbf{y} = \mathbf{x} + (-\mathbf{y}) = (x_1 - y_1, x_2 - y_2, \dots, x_n - y_n)$

Properties of linear operations

$$x + y = y + x$$

(x + y) + z = x + (y + z)
x + 0 = 0 + x = x
x + (-x) = (-x) + x = 0
r(x + y) = rx + ry
(r + s)x = rx + sx
(rs)x = r(sx)
1x = x
0x = 0
(-1)x = -x

Linear operations on matrices

Let $A = (a_{ij})$ and $B = (b_{ij})$ be $m \times n$ matrices, and $r \in \mathbb{R}$ be a scalar.

 $\begin{array}{lll} \textit{Matrix sum:} & A+B=(a_{ij}+b_{ij})_{1\leq i\leq m,\ 1\leq j\leq n}\\ \textit{Scalar multiple:} & rA=(ra_{ij})_{1\leq i\leq m,\ 1\leq j\leq n}\\ \textit{Zero matrix O:} & \text{all entries are zeros}\\ \textit{Negative of a matrix:} & -A=(-a_{ij})_{1\leq i\leq m,\ 1\leq j\leq n}\\ \textit{Matrix difference:} & A-B=(a_{ij}-b_{ij})_{1\leq i\leq m,\ 1\leq j\leq n}\\ \end{array}$

As far as the linear operations are concerned, the $m \times n$ matrices have the same properties as *mn*-dimensional vectors.

Vector space: informal description

Vector space = linear space = a set V of objects (called vectors) that can be added and scaled.

That is, for any $\mathbf{u}, \mathbf{v} \in V$ and $r \in \mathbb{R}$ expressions $\mathbf{u} + \mathbf{v}$ and $r\mathbf{u}$

should make sense.

Certain restrictions apply. For instance,

```
\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u},2\mathbf{u} + 3\mathbf{u} = 5\mathbf{u}.
```

That is, addition and scalar multiplication in V should be like those of *n*-dimensional vectors.

Vector space: definition

Vector space is a set *V* equipped with two operations $\alpha : V \times V \rightarrow V$ and $\mu : \mathbb{R} \times V \rightarrow V$ that have certain properties (listed below).

The operation α is called *addition*. For any $\mathbf{u}, \mathbf{v} \in V$, the element $\alpha(\mathbf{u}, \mathbf{v})$ is denoted $\mathbf{u} + \mathbf{v}$.

The operation μ is called *scalar multiplication*. For any $r \in \mathbb{R}$ and $\mathbf{u} \in V$, the element $\mu(r, \mathbf{u})$ is denoted $r\mathbf{u}$. Properties of addition and scalar multiplication (brief)

A1.
$$x + y = y + x$$

A2. $(x + y) + z = x + (y + z)$
A3. $x + 0 = 0 + x = x$
A4. $x + (-x) = (-x) + x = 0$
A5. $r(x + y) = rx + ry$
A6. $(r + s)x = rx + sx$
A7. $(rs)x = r(sx)$
A8. $1x = x$

Properties of addition and scalar multiplication (detailed)

A1.
$$\mathbf{x} + \mathbf{y} = \mathbf{y} + \mathbf{x}$$
 for all $\mathbf{x}, \mathbf{y} \in V$.
A2. $(\mathbf{x} + \mathbf{y}) + \mathbf{z} = \mathbf{x} + (\mathbf{y} + \mathbf{z})$ for all $\mathbf{x}, \mathbf{y}, \mathbf{z} \in V$.
A3. There exists an element of V , called the *zero*
vector and denoted $\mathbf{0}$, such that $\mathbf{x} + \mathbf{0} = \mathbf{0} + \mathbf{x} = \mathbf{x}$
for all $\mathbf{x} \in V$.

A4. For any $\mathbf{x} \in V$ there exists an element of V, denoted $-\mathbf{x}$, such that $\mathbf{x} + (-\mathbf{x}) = (-\mathbf{x}) + \mathbf{x} = \mathbf{0}$. A5. $r(\mathbf{x} + \mathbf{y}) = r\mathbf{x} + r\mathbf{y}$ for all $r \in \mathbb{R}$ and $\mathbf{x}, \mathbf{y} \in V$. A6. $(r + s)\mathbf{x} = r\mathbf{x} + s\mathbf{x}$ for all $r, s \in \mathbb{R}$ and $\mathbf{x} \in V$. A7. $(rs)\mathbf{x} = r(s\mathbf{x})$ for all $r, s \in \mathbb{R}$ and $\mathbf{x} \in V$. A8. $1\mathbf{x} = \mathbf{x}$ for all $\mathbf{x} \in V$. • Associativity of addition implies that a multiple sum $\mathbf{u}_1 + \mathbf{u}_2 + \cdots + \mathbf{u}_k$ is well defined for any $\mathbf{u}_1, \mathbf{u}_2, \ldots, \mathbf{u}_k \in V$.

• Subtraction in V is defined as follows: $\mathbf{x} - \mathbf{y} = \mathbf{x} + (-\mathbf{y}).$

• Addition and scalar multiplication are called **linear operations**.

Given
$$\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_k \in V$$
 and $r_1, r_2, \dots, r_k \in \mathbb{R}$,
$$\boxed{r_1\mathbf{u}_1 + r_2\mathbf{u}_2 + \dots + r_k\mathbf{u}_k}$$

is called a **linear combination** of $\mathbf{u}_1, \mathbf{u}_2, \ldots, \mathbf{u}_k$.

Examples of vector spaces

In most examples, addition and scalar multiplication are natural operations so that properties A1–A8 are easy to verify.

- \mathbb{R}^n : *n*-dimensional coordinate vectors
- $\mathcal{M}_{m,n}(\mathbb{R})$: $m \times n$ matrices with real entries

• \mathbb{R}^{∞} : infinite sequences (x_1, x_2, \ldots) , $x_i \in \mathbb{R}$ For any $\mathbf{x} = (x_1, x_2, \ldots)$, $\mathbf{y} = (y_1, y_2, \ldots) \in \mathbb{R}^{\infty}$ and $r \in \mathbb{R}$ let $\mathbf{x} + \mathbf{y} = (x_1 + y_1, x_2 + y_2, \ldots)$, $r\mathbf{x} = (rx_1, rx_2, \ldots)$. Then $\mathbf{0} = (0, 0, \ldots)$ and $-\mathbf{x} = (-x_1, -x_2, \ldots)$.

•
$$\{0\}$$
: the trivial vector space
0 + 0 = 0, $r0 = 0$, $-0 = 0$.

Functional vector spaces

• $F(\mathbb{R})$: the set of all functions $f : \mathbb{R} \to \mathbb{R}$ Given functions $f, g \in F(\mathbb{R})$ and a scalar $r \in \mathbb{R}$, let (f+g)(x) = f(x) + g(x) and (rf)(x) = rf(x) for all $x \in \mathbb{R}$. Zero vector: o(x) = 0. Negative: (-f)(x) = -f(x).

• $C(\mathbb{R})$: all continuous functions $f : \mathbb{R} \to \mathbb{R}$ Linear operations are inherited from $F(\mathbb{R})$. We only need to check that $f, g \in C(\mathbb{R}) \implies f+g, rf \in C(\mathbb{R})$, the zero function is continuous, and $f \in C(\mathbb{R}) \implies -f \in C(\mathbb{R})$.

• $C^1(\mathbb{R})$: all continuously differentiable functions $f: \mathbb{R} \to \mathbb{R}$

- $C^{\infty}(\mathbb{R})$: all smooth functions $f:\mathbb{R}\to\mathbb{R}$
- \mathcal{P} : all polynomials $p(x) = a_0 + a_1 x + \cdots + a_n x^n$

Some general observations

• The zero vector is unique.

Suppose z_1 and z_2 are zero vectors. Then $z_1 + z_2 = z_2$ since z_1 is a zero vector and $z_1 + z_2 = z_1$ since z_2 is a zero vector. Hence $z_1 = z_2$.

• For any $\mathbf{x} \in V$, the negative $-\mathbf{x}$ is unique.

Suppose y and y' are both negatives of x. Let us compute the sum y' + x + y in two ways:

$$(y' + x) + y = 0 + y = y,$$

 $y' + (x + y) = y' + 0 = y'.$

By associativity of the vector addition, $\mathbf{y} = \mathbf{y}'$.

Some general observations

• (cancellation law) $\mathbf{x} + \mathbf{y} = \mathbf{x}' + \mathbf{y}$ implies $\mathbf{x} = \mathbf{x}'$ for any $\mathbf{x}, \mathbf{x}', \mathbf{y} \in V$.

If $\mathbf{x} + \mathbf{y} = \mathbf{x}' + \mathbf{y}$ then $(\mathbf{x} + \mathbf{y}) + (-\mathbf{y}) = (\mathbf{x}' + \mathbf{y}) + (-\mathbf{y})$. By associativity, $(\mathbf{x} + \mathbf{y}) + (-\mathbf{y}) = \mathbf{x} + (\mathbf{y} + (-\mathbf{y})) = \mathbf{x} + \mathbf{0} = \mathbf{x}$ and $(\mathbf{x}' + \mathbf{y}) + (-\mathbf{y}) = \mathbf{x}' + (\mathbf{y} + (-\mathbf{y})) = \mathbf{x}' + \mathbf{0} = \mathbf{x}'$. Hence $\mathbf{x} = \mathbf{x}'$.

•
$$0\mathbf{x} = \mathbf{0}$$
 for any $\mathbf{x} \in V$.

Indeed, $0\mathbf{x} + \mathbf{x} = 0\mathbf{x} + 1\mathbf{x} = (0+1)\mathbf{x} = 1\mathbf{x} = \mathbf{x} = \mathbf{0} + \mathbf{x}$. By the cancellation law, $0\mathbf{x} = \mathbf{0}$.

•
$$(-1)\mathbf{x} = -\mathbf{x}$$
 for any $\mathbf{x} \in V$.
Indeed, $\mathbf{x} + (-1)\mathbf{x} = (-1)\mathbf{x} + \mathbf{x} = (-1)\mathbf{x} + 1\mathbf{x} = (-1+1)\mathbf{x}$
 $= 0\mathbf{x} = \mathbf{0}$.

Counterexample: dumb scaling

Consider the set $V = \mathbb{R}^n$ with the standard addition and a nonstandard scalar multiplication:

$$r \odot \mathbf{x} = \mathbf{0}$$
 for any $\mathbf{x} \in \mathbb{R}^n$ and $r \in \mathbb{R}$.

Properties A1–A4 hold because they do not involve scalar multiplication.

A5.
$$r \odot (\mathbf{x} + \mathbf{y}) = r \odot \mathbf{x} + r \odot \mathbf{y}$$
 $\iff \mathbf{0} = \mathbf{0} + \mathbf{0}$ A6. $(r + s) \odot \mathbf{x} = r \odot \mathbf{x} + s \odot \mathbf{x}$ $\iff \mathbf{0} = \mathbf{0} + \mathbf{0}$ A7. $(rs) \odot \mathbf{x} = r \odot (s \odot \mathbf{x})$ $\iff \mathbf{0} = \mathbf{0}$ A8. $1 \odot \mathbf{x} = \mathbf{x}$ $\iff \mathbf{0} = \mathbf{x}$

A8 is the only property that fails. As a consequence, property A8 does not follow from properties A1–A7.

Counterexample: lazy scaling

Consider the set $V = \mathbb{R}^n$ with the standard addition and a nonstandard scalar multiplication:

$$r \odot \mathbf{x} = \mathbf{x}$$
 for any $\mathbf{x} \in \mathbb{R}^n$ and $r \in \mathbb{R}$.

Properties A1–A4 hold because they do not involve scalar multiplication.

A5. $r \odot (\mathbf{x} + \mathbf{y}) = r \odot \mathbf{x} + r \odot \mathbf{y} \iff \mathbf{x} + \mathbf{y} = \mathbf{x} + \mathbf{y}$ A6. $(r + s) \odot \mathbf{x} = r \odot \mathbf{x} + s \odot \mathbf{x} \iff \mathbf{x} = \mathbf{x} + \mathbf{x}$ A7. $(rs) \odot \mathbf{x} = r \odot (s \odot \mathbf{x}) \iff \mathbf{x} = \mathbf{x}$ A8. $1 \odot \mathbf{x} = \mathbf{x} \iff \mathbf{x} = \mathbf{x}$

The only property that fails is A6.

Weird example

Consider the set $V = \mathbb{R}_+$ of positive numbers with a nonstandard addition and scalar multiplication:

$$\begin{array}{c} x \oplus y = xy \\ \hline r \odot x = x^{r} \end{array} \mbox{ for any } x, y \in \mathbb{R}_{+}. \\ \hline r \odot x = x^{r} \mbox{ for any } x \in \mathbb{R}_{+} \mbox{ and } r \in \mathbb{R}. \end{array}$$

A1. $x \oplus y = y \oplus x \iff xy = yx$ A2. $(x \oplus y) \oplus z = x \oplus (y \oplus z) \iff (xy)z = x(yz)$ A3. $x \oplus \zeta = \zeta \oplus x = x \iff x\zeta = \zeta x = x$ (holds for $\zeta = 1$) A4. $x \oplus \eta = \eta \oplus x = 1 \iff x\eta = \eta x = 1$ (holds for $\eta = x^{-1}$) A5. $r \odot (x \oplus y) = (r \odot x) \oplus (r \odot y) \iff (xy)^r = x^r y^r$ A6. $(r+s) \odot x = (r \odot x) \oplus (s \odot x) \iff x^{r+s} = x^r x^s$ A7. $(rs) \odot x = r \odot (s \odot x) \iff x^{rs} = (x^s)^r$ A8. $1 \odot x = x \iff x^1 = x$