MATH 304
 Linear Algebra

Lecture 12:
Subspaces of vector spaces.

Abstract vector space

A vector space is a set V equipped with two operations, addition $V \times V \ni(\mathbf{x}, \mathbf{y}) \mapsto \mathbf{x}+\mathbf{y} \in V$ and scalar multiplication $\mathbb{R} \times V \ni(r, \mathbf{x}) \mapsto r \mathbf{x} \in V$, that have the following properties:
A1. $\mathbf{x}+\mathbf{y}=\mathbf{y}+\mathbf{x}$ for all $\mathbf{x}, \mathbf{y} \in V$;
A2. $(\mathbf{x}+\mathbf{y})+\mathbf{z}=\mathbf{x}+(\mathbf{y}+\mathbf{z})$ for all $\mathbf{x}, \mathbf{y}, \mathbf{z} \in V$;
A3. there exists an element of V, called the zero vector and denoted $\mathbf{0}$, such that $\mathbf{x}+\mathbf{0}=\mathbf{0}+\mathbf{x}=\mathbf{x}$ for all $\mathbf{x} \in V$;
A4. for any $\mathbf{x} \in V$ there exists an element of V, denoted $-\mathbf{x}$, such that $\mathbf{x}+(-\mathbf{x})=(-\mathbf{x})+\mathbf{x}=\mathbf{0}$;
A5. $r(\mathbf{x}+\mathbf{y})=r \mathbf{x}+r \mathbf{y}$ for all $r \in \mathbb{R}$ and $\mathbf{x}, \mathbf{y} \in V$;
A6. $(r+s) \mathbf{x}=r \mathbf{x}+s \mathbf{x}$ for all $r, s \in \mathbb{R}$ and $\mathbf{x} \in V$;
A7. $(r s) \mathbf{x}=r(s \mathbf{x})$ for all $r, s \in \mathbb{R}$ and $\mathbf{x} \in V$;
A8. $1 \mathbf{x}=\mathbf{x}$ for all $\mathbf{x} \in V$.

Additional properties of vector spaces

- The zero vector is unique.
- For any $\mathbf{x} \in V$, the negative $-\mathbf{x}$ is unique.
$\cdot \mathbf{x}+\mathbf{y}=\mathbf{z} \Longleftrightarrow \mathbf{x}=\mathbf{z}-\mathbf{y}$ for all $\mathbf{x}, \mathbf{y}, \mathbf{z} \in V$.
- $\mathbf{x}+\mathbf{z}=\mathbf{y}+\mathbf{z} \Longleftrightarrow \mathbf{x}=\mathbf{y}$ for all $\mathbf{x}, \mathbf{y}, \mathbf{z} \in V$.
- $0 \mathbf{x}=\mathbf{0}$ for any $\mathbf{x} \in V$.
- $(-1) \mathbf{x}=-\mathbf{x}$ for any $\mathbf{x} \in V$.

Examples of vector spaces

- \mathbb{R}^{n} : n-dimensional coordinate vectors
- $\mathcal{M}_{m, n}(\mathbb{R}): m \times n$ matrices with real entries
- \mathbb{R}^{∞} : infinite sequences $\left(x_{1}, x_{2}, \ldots\right), x_{i} \in \mathbb{R}$
- $\{\mathbf{0}\}$: the trivial vector space
- $F(\mathbb{R})$: the set of all functions $f: \mathbb{R} \rightarrow \mathbb{R}$
- $C(\mathbb{R})$: all continuous functions $f: \mathbb{R} \rightarrow \mathbb{R}$
- $C^{1}(\mathbb{R})$: all continuously differentiable functions
$f: \mathbb{R} \rightarrow \mathbb{R}$
- $C^{\infty}(\mathbb{R})$: all smooth functions $f: \mathbb{R} \rightarrow \mathbb{R}$
- \mathcal{P} : all polynomials $p(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n}$

Subspaces of vector spaces

Definition. A vector space V_{0} is a subspace of a vector space V if $V_{0} \subset V$ and the linear operations on V_{0} agree with the linear operations on V.

Examples.

- $F(\mathbb{R})$: all functions $f: \mathbb{R} \rightarrow \mathbb{R}$
- $C(\mathbb{R})$: all continuous functions $f: \mathbb{R} \rightarrow \mathbb{R}$
$C(\mathbb{R})$ is a subspace of $F(\mathbb{R})$.
- \mathcal{P} : polynomials $p(x)=a_{0}+a_{1} x+\cdots+a_{k} x^{k}$
- \mathcal{P}_{n} : polynomials of degree less than n
\mathcal{P}_{n} is a subspace of \mathcal{P}.

Subspaces of vector spaces

Counterexamples.

- \mathbb{R}^{n} : n-dimensional coordinate vectors
- \mathbb{Q}^{n} : vectors with rational coordinates
\mathbb{Q}^{n} is not a subspace of \mathbb{R}^{n}.
$\sqrt{2}(1,1, \ldots, 1) \notin \mathbb{Q}^{n} \Longrightarrow \mathbb{Q}^{n}$ is not a vector space (scaling is not well defined).
- \mathcal{P} : polynomials $p(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n}$
- P_{n}^{*} : polynomials of degree $n(n>0)$
P_{n}^{*} is not a subspace of \mathcal{P}.
$-x^{n}+\left(x^{n}+1\right)=1 \notin P_{n}^{*} \Longrightarrow P_{n}^{*}$ is not a vector space (addition is not well defined).

If S is a subset of a vector space V then S inherits from V addition and scalar multiplication. However S need not be closed under these operations.

Proposition A subset S of a vector space V is a subspace of V if and only if S is nonempty and closed under linear operations, i.e.,

$$
\begin{gathered}
\mathbf{x}, \mathbf{y} \in S \Longrightarrow \mathbf{x}+\mathbf{y} \in S \\
\mathbf{x} \in S \Longrightarrow r \mathbf{x} \in S \text { for all } r \in \mathbb{R}
\end{gathered}
$$

Proof: "only if" is obvious.
"if": properties like associative, commutative, or distributive law hold for S because they hold for V. We only need to verify properties A3 and A4. Take any $\mathbf{x} \in S$ (note that S is nonempty). Then $\mathbf{0}=0 \mathbf{x} \in S$. Also, $-\mathbf{x}=(-1) \mathbf{x} \in S$. Thus $\mathbf{0}$ and $-\mathbf{x}$ in S are the same as in V.

Example. $\quad V=\mathbb{R}^{2}$.

- The line $x-y=0$ is a subspace of \mathbb{R}^{2}.

The line consists of all vectors of the form $(t, t), t \in \mathbb{R}$.

$$
\begin{aligned}
& (t, t)+(s, s)=(t+s, t+s) \Longrightarrow \text { closed under addition } \\
& r(t, t)=(r t, r t) \Longrightarrow \text { closed under scaling }
\end{aligned}
$$

- The parabola $y=x^{2}$ is not a subspace of \mathbb{R}^{2}.

It is enough to find one explicit counterexample.
Counterexample 1: $(1,1)+(-1,1)=(0,2)$.
$(1,1)$ and $(-1,1)$ lie on the parabola while $(0,2)$ does not
\Longrightarrow not closed under addition
Counterexample 2: $2(1,1)=(2,2)$.
$(1,1)$ lies on the parabola while $(2,2)$ does not
\Longrightarrow not closed under scaling

Example. $\quad V=\mathbb{R}^{3}$.

- The plane $z=0$ is a subspace of \mathbb{R}^{3}.
- The plane $z=1$ is not a subspace of \mathbb{R}^{3}.
- The line $t(1,1,0), t \in \mathbb{R}$ is a subspace of \mathbb{R}^{3} and a subspace of the plane $z=0$.
- The line $(1,1,1)+t(1,-1,0), t \in \mathbb{R}$ is not a subspace of \mathbb{R}^{3} as it lies in the plane $x+y+z=3$, which does not contain $\mathbf{0}$.
- In general, a straight line or a plane in \mathbb{R}^{3} is a subspace if and only if it passes through the origin.

System of linear equations:

$$
\left\{\begin{array}{c}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}=b_{2} \\
\cdots \cdots+a_{m n} x_{n}=b_{m}
\end{array}\right.
$$

Any solution $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is an element of \mathbb{R}^{n}.
Theorem The solution set of the system is a subspace of \mathbb{R}^{n} if and only if all $b_{i}=0$.

Theorem The solution set of a system of linear equations in n variables is a subspace of \mathbb{R}^{n} if and only if all equations are homogeneous.

Proof: "only if": the zero vector $\mathbf{0}=(0,0, \ldots, 0)$, which belongs to every subspace, is a solution only if all equations are homogeneous.
" if ": a system of homogeneous linear equations is equivalent to a matrix equation $A \mathbf{x}=\mathbf{0}$, where A is the coefficient matrix of the system and all vectors are regarded as column vectors.
$A \mathbf{0}=\mathbf{0} \Longrightarrow \mathbf{0}$ is a solution \Longrightarrow solution set is not empty.
If $A \mathbf{x}=\mathbf{0}$ and $A \mathbf{y}=\mathbf{0}$ then $A(\mathbf{x}+\mathbf{y})=A \mathbf{x}+A \mathbf{y}=\mathbf{0}$
\Longrightarrow solution set is closed under addition.
If $A \mathbf{x}=\mathbf{0}$ then $A(r \mathbf{x})=r(A \mathbf{x})=\mathbf{0}$
\Longrightarrow solution set is closed under scaling.
Thus the solution set is a subspace of \mathbb{R}^{n}.

Examples of subspaces of $\mathcal{M}_{2,2}(\mathbb{R}): \quad A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$

- diagonal matrices: $b=c=0$
- upper triangular matrices: $c=0$
- lower triangular matrices: $b=0$
- symmetric matrices $\left(A^{T}=A\right): \quad b=c$
- anti-symmetric (or skew-symmetric) matrices
$\left(A^{T}=-A\right): a=d=0, c=-b$
- matrices with zero trace: $a+d=0$
(trace $=$ the sum of diagonal entries)
- matrices with zero determinant, $a d-b c=0$, do not form a subspace: $\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)+\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$.

