MATH 304
 Linear Algebra
 Lecture 17:
 Basis and dimension (continued). Rank of a matrix.

Basis

Definition. Let V be a vector space. A linearly independent spanning set for V is called a basis.

Equivalently, a nonempty subset $S \subset V$ is a basis for V if any vector $\mathbf{v} \in V$ is uniquely represented as a linear combination

$$
\mathbf{v}=r_{1} \mathbf{v}_{1}+r_{2} \mathbf{v}_{2}+\cdots+r_{k} \mathbf{v}_{k}
$$

where $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ are distinct vectors from S and $r_{1}, \ldots, r_{k} \in \mathbb{R}$.

Dimension

Theorem 1 Any vector space has a basis.
Theorem 2 If a vector space V has a finite basis, then all bases for V are finite and have the same number of elements.

Definition. The dimension of a vector space V, denoted $\operatorname{dim} V$, is the number of elements in any of its bases.

Examples. - $\operatorname{dim} \mathbb{R}^{n}=n$

- $\mathcal{M}_{m, n}(\mathbb{R})$: the space of $m \times n$ matrices; $\operatorname{dim} \mathcal{M}_{m, n}=m n$
- \mathcal{P}_{n} : polynomials of degree less than $n ; \operatorname{dim} \mathcal{P}_{n}=n$
- \mathcal{P} : the space of all polynomials; $\operatorname{dim} \mathcal{P}=\infty$
- $\{\boldsymbol{0}\}$: the trivial vector space; $\operatorname{dim}\{\mathbf{0}\}=0$

How to find a basis?

Theorem Let V be a vector space. Then
(i) any spanning set for V contains a basis;
(ii) any linearly independent subset of V is contained in a basis.

Approach 1. Given a spanning set for the vector space, reduce this set to a basis.

Approach 2. Given a linearly independent set, extend this set to a basis.

Approach 2a. Given a spanning set S_{1} and a linearly independent set S_{2}, extend the set S_{2} to a basis adding vectors from the set S_{1}.

Problem. Find a basis for the vector space V spanned by vectors $\mathbf{w}_{1}=(1,1,0), \mathbf{w}_{2}=(0,1,1)$, $\mathbf{w}_{3}=(2,3,1)$, and $\mathbf{w}_{4}=(1,1,1)$.

To pare this spanning set, we need to find a relation of the form $r_{1} \mathbf{w}_{1}+r_{2} \mathbf{w}_{2}+r_{3} \mathbf{w}_{3}+r_{4} \mathbf{w}_{4}=\mathbf{0}$, where $r_{i} \in \mathbb{R}$ are not all equal to zero. Equivalently,

$$
\left(\begin{array}{llll}
1 & 0 & 2 & 1 \\
1 & 1 & 3 & 1 \\
0 & 1 & 1 & 1
\end{array}\right)\left(\begin{array}{l}
r_{1} \\
r_{2} \\
r_{3} \\
r_{4}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) .
$$

To solve this system of linear equations for $r_{1}, r_{2}, r_{3}, r_{4}$, we apply row reduction.

$$
\begin{aligned}
& \left(\begin{array}{llll}
1 & 0 & 2 & 1 \\
1 & 1 & 3 & 1 \\
0 & 1 & 1 & 1
\end{array}\right) \rightarrow\left(\begin{array}{llll}
1 & 0 & 2 & 1 \\
0 & 1 & 1 & 0 \\
0 & 1 & 1 & 1
\end{array}\right) \rightarrow\left(\begin{array}{llll}
1 & 0 & 2 & 1 \\
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \\
& \rightarrow\left(\begin{array}{llll}
1 & 0 & 2 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \\
& \left\{\begin{array}{l}
r_{1}+2 r_{3}=0 \\
r_{2}+r_{3}=0 \\
r_{4}=0
\end{array} \Longleftrightarrow\right. \text { (reduced row echelon form) } \\
& \Longleftrightarrow\left\{\begin{array}{l}
r_{1}=-2 r_{3} \\
r_{2}=-r_{3} \\
r_{4}=0
\end{array}\right.
\end{aligned}
$$

General solution: $\left(r_{1}, r_{2}, r_{3}, r_{4}\right)=(-2 t,-t, t, 0), t \in \mathbb{R}$. Particular solution: $\left(r_{1}, r_{2}, r_{3}, r_{4}\right)=(2,1,-1,0)$.

Problem. Find a basis for the vector space V spanned by vectors $\mathbf{w}_{1}=(1,1,0), \mathbf{w}_{2}=(0,1,1)$,
$\mathbf{w}_{3}=(2,3,1)$, and $\mathbf{w}_{4}=(1,1,1)$.
We have obtained that $2 \mathbf{w}_{1}+\mathbf{w}_{2}-\mathbf{w}_{3}=\mathbf{0}$. Hence any of vectors $\mathbf{w}_{1}, \mathbf{w}_{2}, \mathbf{w}_{3}$ can be dropped. For instance, $V=\operatorname{Span}\left(\mathbf{w}_{1}, \mathbf{w}_{2}, \mathbf{w}_{4}\right)$.
Let us check whether vectors $\mathbf{w}_{1}, \mathbf{w}_{2}, \mathbf{w}_{4}$ are linearly independent:

$$
\left|\begin{array}{lll}
1 & 0 & 1 \\
1 & 1 & 1 \\
0 & 1 & 1
\end{array}\right|=\left|\begin{array}{lll}
1 & 0 & 1 \\
1 & 1 & 0 \\
0 & 1 & 0
\end{array}\right|=\left|\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right|=1 \neq 0
$$

They are!!! It follows that $V=\mathbb{R}^{3}$ and $\left\{\mathbf{w}_{1}, \mathbf{w}_{2}, \mathbf{w}_{4}\right\}$ is a basis for V.

Row space of a matrix

Definition. The row space of an $m \times n$ matrix A is the subspace of \mathbb{R}^{n} spanned by rows of A.
The dimension of the row space is called the rank of the matrix A.

Theorem 1 The rank of a matrix A is the maximal number of linearly independent rows in A.

Theorem 2 Elementary row operations do not change the row space of a matrix.
Theorem 3 If a matrix A is in row echelon form, then the nonzero rows of A are linearly independent.
Corollary The rank of a matrix is equal to the number of nonzero rows in its row echelon form.

Theorem Elementary row operations do not

 change the row space of a matrix.Proof: Suppose that A and B are $m \times n$ matrices such that B is obtained from A by an elementary row operation. Let $\mathbf{a}_{1}, \ldots, \mathbf{a}_{m}$ be the rows of A and $\mathbf{b}_{1}, \ldots, \mathbf{b}_{m}$ be the rows of B. We have to show that $\operatorname{Span}\left(\mathbf{a}_{1}, \ldots, \mathbf{a}_{m}\right)=\operatorname{Span}\left(\mathbf{b}_{1}, \ldots, \mathbf{b}_{m}\right)$.
Observe that any row \mathbf{b}_{i} of B belongs to $\operatorname{Span}\left(\mathbf{a}_{1}, \ldots, \mathbf{a}_{m}\right)$. Indeed, either $\mathbf{b}_{i}=\mathbf{a}_{j}$ for some $1 \leq j \leq m$, or $\mathbf{b}_{i}=r \mathbf{a}_{i}$ for some scalar $r \neq 0$, or $\mathbf{b}_{i}=\mathbf{a}_{i}+r \mathbf{a}_{j}$ for some $j \neq i$ and $r \in \mathbb{R}$.
It follows that $\operatorname{Span}\left(\mathbf{b}_{1}, \ldots, \mathbf{b}_{m}\right) \subset \operatorname{Span}\left(\mathbf{a}_{1}, \ldots, \mathbf{a}_{m}\right)$.
Now the matrix A can also be obtained from B by an elementary row operation. By the above,

$$
\operatorname{Span}\left(\mathbf{a}_{1}, \ldots, \mathbf{a}_{m}\right) \subset \operatorname{Span}\left(\mathbf{b}_{1}, \ldots, \mathbf{b}_{m}\right)
$$

Problem. Find the rank of the matrix

$$
A=\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
2 & 3 & 1 \\
1 & 1 & 1
\end{array}\right)
$$

Elementary row operations do not change the row space. Let us convert A to row echelon form:

$$
\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
2 & 3 & 1 \\
1 & 1 & 1
\end{array}\right) \rightarrow\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
0 & 1 & 1 \\
1 & 1 & 1
\end{array}\right) \rightarrow\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right)
$$

$$
\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right) \rightarrow\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right) \rightarrow\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right)
$$

Vectors $(1,1,0),(0,1,1)$, and $(0,0,1)$ form a basis for the row space of A. Thus the rank of A is 3 .

It follows that the row space of A is the entire space \mathbb{R}^{3}.

Problem. Find a basis for the vector space V spanned by vectors $\mathbf{w}_{1}=(1,1,0), \mathbf{w}_{2}=(0,1,1)$, $\mathbf{w}_{3}=(2,3,1)$, and $\mathbf{w}_{4}=(1,1,1)$.

The vector space V is the row space of a matrix

$$
\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
2 & 3 & 1 \\
1 & 1 & 1
\end{array}\right) .
$$

According to the solution of the previous problem, vectors $(1,1,0),(0,1,1)$, and $(0,0,1)$ form a basis for V.

Column space of a matrix

Definition. The column space of an $m \times n$ matrix A is the subspace of \mathbb{R}^{m} spanned by columns of A.

Theorem 1 The column space of a matrix A coincides with the row space of the transpose matrix A^{T}.
Theorem 2 Elementary row operations do not change linear relations between columns of a matrix.

Theorem 3 Elementary row operations do not change the dimension of the column space of a matrix (however they can change the column space).
Theorem 4 If a matrix is in row echelon form, then the columns with leading entries form a basis for the column space.
Corollary For any matrix, the row space and the column space have the same dimension.

Problem. Find a basis for the column space of the matrix

$$
A=\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
2 & 3 & 1 \\
1 & 1 & 1
\end{array}\right)
$$

The column space of A coincides with the row space of A^{T}. To find a basis, we convert A^{T} to row echelon form:
$A^{T}=\left(\begin{array}{llll}1 & 0 & 2 & 1 \\ 1 & 1 & 3 & 1 \\ 0 & 1 & 1 & 1\end{array}\right) \rightarrow\left(\begin{array}{llll}1 & 0 & 2 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1\end{array}\right) \rightarrow\left(\begin{array}{llll}1 & 0 & 2 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right)$
Vectors $(1,0,2,1),(0,1,1,0)$, and ($0,0,0,1$) form a basis for the column space of A.

Problem. Find a basis for the column space of the matrix

$$
A=\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
2 & 3 & 1 \\
1 & 1 & 1
\end{array}\right)
$$

Alternative solution: We already know from a previous problem that the rank of A is 3 . It follows that the columns of A are linearly independent. Therefore these columns form a basis for the column space.

Problem. Let V be a vector space spanned by vectors $\mathbf{w}_{1}=(1,1,0), \mathbf{w}_{2}=(0,1,1), \mathbf{w}_{3}=(2,3,1)$, and $\mathbf{w}_{4}=(1,1,1)$. Pare this spanning set to a basis for V.

Alternative solution: The vector space V is the column space of a matrix

$$
B=\left(\begin{array}{llll}
1 & 0 & 2 & 1 \\
1 & 1 & 3 & 1 \\
0 & 1 & 1 & 1
\end{array}\right) .
$$

The row echelon form of B is $C=\left(\begin{array}{llll}1 & 0 & 2 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right)$.
Columns of C with leading entries (1st, 2nd, and 4th) form a basis for the column space of C. It follows that the corresponding columns of B (i.e., 1st, 2nd, and 4th) form a basis for the column space of B.
Thus $\left\{\mathbf{w}_{1}, \mathbf{w}_{2}, \mathbf{w}_{4}\right\}$ is a basis for V.

