MATH 304
 Linear Algebra

Lecture 18:
 Nullity of a matrix. Basis and coordinates.
 Change of coordinates.

Rank of a matrix

Definition. The row space of an $m \times n$ matrix A is the subspace of \mathbb{R}^{n} spanned by rows of A. The column space of A is a subspace of \mathbb{R}^{m} spanned by columns of A.
The row space and the column space of A have the same dimension, which is called the rank of A.

Theorem 1 Elementary row operations do not change the row space of a matrix.
Theorem 2 If a matrix A is in row echelon form, then the nonzero rows of A form a basis for the row space.
Theorem 3 The rank of a matrix is equal to the number of nonzero rows in its row echelon form.

Nullspace of a matrix

Let $A=\left(a_{i j}\right)$ be an $m \times n$ matrix.
Definition. The nullspace of the matrix A, denoted $N(A)$, is the set of all n-dimensional column vectors \mathbf{x} such that $A \mathbf{x}=\mathbf{0}$.

$$
\left(\begin{array}{ccccc}
a_{11} & a_{12} & a_{13} & \ldots & a_{1 n} \\
a_{21} & a_{22} & a_{23} & \ldots & a_{2 n} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
a_{m 1} & a_{m 2} & a_{m 3} & \ldots & a_{m n}
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
\vdots \\
x_{n}
\end{array}\right)=\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
0
\end{array}\right)
$$

The nullspace $N(A)$ is the solution set of a system of linear homogeneous equations (with A as the coefficient matrix).

Let A be an $m \times n$ matrix. Then the nullspace $N(A)$ is the solution set of a system of linear homogeneous equations in n variables.

Theorem The nullspace $N(A)$ is a subspace of the vector space \mathbb{R}^{n}.

Definition. The dimension of the nullspace $N(A)$ is called the nullity of the matrix A.

Problem. Find the nullity of the matrix

$$
A=\left(\begin{array}{llll}
1 & 1 & 1 & 1 \\
2 & 3 & 4 & 5
\end{array}\right)
$$

Elementary row operations do not change the nullspace. Let us convert A to reduced row echelon form:

$$
\begin{gathered}
\left(\begin{array}{llll}
1 & 1 & 1 & 1 \\
2 & 3 & 4 & 5
\end{array}\right) \rightarrow\left(\begin{array}{llll}
1 & 1 & 1 & 1 \\
0 & 1 & 2 & 3
\end{array}\right) \rightarrow\left(\begin{array}{rrrr}
1 & 0 & -1 & -2 \\
0 & 1 & 2 & 3
\end{array}\right) \\
\left\{\begin{array} { l }
{ x _ { 1 } - x _ { 3 } - 2 x _ { 4 } = 0 } \\
{ x _ { 2 } + 2 x _ { 3 } + 3 x _ { 4 } = 0 }
\end{array} \Longleftrightarrow \left\{\begin{array}{l}
x_{1}=x_{3}+2 x_{4} \\
x_{2}=-2 x_{3}-3 x_{4}
\end{array}\right.\right.
\end{gathered}
$$

General element of $N(A)$:

$$
\begin{aligned}
\left(x_{1}, x_{2}, x_{3}, x_{4}\right) & =(t+2 s,-2 t-3 s, t, s) \\
& =t(1,-2,1,0)+s(2,-3,0,1), t, s \in \mathbb{R} .
\end{aligned}
$$

Vectors $(1,-2,1,0)$ and $(2,-3,0,1)$ form a basis for $N(A)$. Thus the nullity of the matrix A is 2 .

rank + nullity

Theorem The rank of a matrix A plus the nullity of A equals the number of columns in A.

Sketch of the proof: The rank of A equals the number of nonzero rows in the row echelon form, which equals the number of leading entries.
The nullity of A equals the number of free variables in the corresponding homogeneous system, which equals the number of columns without leading entries in the row echelon form.
Consequently, rank+nullity is the number of all columns in the matrix A.

Problem. Find the nullity of the matrix

$$
A=\left(\begin{array}{llll}
1 & 1 & 1 & 1 \\
2 & 3 & 4 & 5
\end{array}\right)
$$

Alternative solution: Clearly, the rows of A are linearly independent. Therefore the rank of A is 2 .
Since

$$
(\text { rank of } A)+(\text { nullity of } A)=4
$$

it follows that the nullity of A is 2 .

Basis and dimension

Definition. Let V be a vector space. A linearly independent spanning set for V is called a basis.

Theorem Any vector space V has a basis. If V has a finite basis, then all bases for V are finite and have the same number of elements (called the dimension of V).

Example. Vectors $\mathbf{e}_{1}=(1,0,0, \ldots, 0,0)$, $\mathbf{e}_{2}=(0,1,0, \ldots, 0,0), \ldots, \mathbf{e}_{n}=(0,0,0, \ldots, 0,1)$ form a basis for \mathbb{R}^{n} (called standard) since

$$
\left(x_{1}, x_{2}, \ldots, x_{n}\right)=x_{1} \mathbf{e}_{1}+x_{2} \mathbf{e}_{2}+\cdots+x_{n} \mathbf{e}_{n}
$$

Basis and coordinates

If $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ is a basis for a vector space V, then any vector $\mathbf{v} \in V$ has a unique representation

$$
\mathbf{v}=x_{1} \mathbf{v}_{1}+x_{2} \mathbf{v}_{2}+\cdots+x_{n} \mathbf{v}_{n}
$$

where $x_{i} \in \mathbb{R}$. The coefficients $x_{1}, x_{2}, \ldots, x_{n}$ are called the coordinates of \mathbf{v} with respect to the ordered basis $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$.

The mapping
vector $\mathbf{v} \mapsto$ its coordinates $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$
is a one-to-one correspondence between V and \mathbb{R}^{n}.
This correspondence respects linear operations in V and in \mathbb{R}^{n}.

Examples. - Coordinates of a vector
$\mathbf{v}=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$ relative to the standard basis $\mathbf{e}_{1}=(1,0, \ldots, 0,0), \mathbf{e}_{2}=(0,1, \ldots, 0,0), \ldots$, $\mathbf{e}_{n}=(0,0, \ldots, 0,1)$ are $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$.

- Coordinates of a matrix $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathcal{M}_{2,2}(\mathbb{R})$ relative to the basis $\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right),\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$, $\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)$ are (a, c, b, d).
- Coordinates of a polynomial $p(x)=a_{0}+a_{1} x+\cdots+a_{n-1} x^{n-1} \in \mathcal{P}_{n}$ relative to the basis $1, x, x^{2}, \ldots, x^{n-1}$ are $\left(a_{0}, a_{1}, \ldots, a_{n-1}\right)$.

Vectors $\mathbf{u}_{1}=(3,1)$ and $\mathbf{u}_{2}=(2,1)$ form a basis for \mathbb{R}^{2}.
Problem 1. Find coordinates of the vector $\mathbf{v}=(7,4)$ with respect to the basis $\mathbf{u}_{1}, \mathbf{u}_{2}$.

The desired coordinates x, y satisfy
$\mathbf{v}=x \mathbf{u}_{1}+y \mathbf{u}_{2} \Longleftrightarrow\left\{\begin{array}{l}3 x+2 y=7 \\ x+y=4\end{array} \Longleftrightarrow\left\{\begin{array}{l}x=-1 \\ y=5\end{array}\right.\right.$
Problem 2. Find the vector \mathbf{w} whose coordinates with respect to the basis $\mathbf{u}_{1}, \mathbf{u}_{2}$ are (7,4).
$\mathbf{w}=7 \mathbf{u}_{1}+4 \mathbf{u}_{2}=7(3,1)+4(2,1)=(29,11)$

Change of coordinates

Given a vector $\mathbf{v} \in \mathbb{R}^{2}$, let (x, y) be its standard coordinates, i.e., coordinates with respect to the standard basis $\mathbf{e}_{1}=(1,0), \mathbf{e}_{2}=(0,1)$, and let (x^{\prime}, y^{\prime}) be its coordinates with respect to the basis $\mathbf{u}_{1}=(3,1), \quad \mathbf{u}_{2}=(2,1)$.

Problem. Find a relation between (x, y) and $\left(x^{\prime}, y^{\prime}\right)$. By definition, $\mathbf{v}=x \mathbf{e}_{1}+y \mathbf{e}_{2}=x^{\prime} \mathbf{u}_{1}+y^{\prime} \mathbf{u}_{2}$. In standard coordinates,

$$
\begin{aligned}
\binom{x}{y} & =x^{\prime}\binom{3}{1}+y^{\prime}\binom{2}{1}=\left(\begin{array}{ll}
3 & 2 \\
1 & 1
\end{array}\right)\binom{x^{\prime}}{y^{\prime}} \\
\Longrightarrow\binom{x^{\prime}}{y^{\prime}} & =\left(\begin{array}{ll}
3 & 2 \\
1 & 1
\end{array}\right)^{-1}\binom{x}{y}=\left(\begin{array}{rr}
1 & -2 \\
-1 & 3
\end{array}\right)\binom{x}{y}
\end{aligned}
$$

Change of coordinates in \mathbb{R}^{n}

The usual (standard) coordinates of a vector $\mathbf{v}=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$ are coordinates relative to the standard basis $\mathbf{e}_{1}=(1,0, \ldots, 0,0), \mathbf{e}_{2}=(0,1, \ldots, 0,0), \ldots$, $\mathbf{e}_{n}=(0,0, \ldots, 0,1)$.
Let $\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{n}$ be another basis for \mathbb{R}^{n} and ($x_{1}^{\prime}, x_{2}^{\prime}, \ldots, x_{n}^{\prime}$) be the coordinates of the same vector \mathbf{v} with respect to this basis.

Problem 1. Given the standard coordinates

 $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, find the nonstandard coordinates $\left(x_{1}^{\prime}, x_{2}^{\prime}, \ldots, x_{n}^{\prime}\right)$.Problem 2. Given the nonstandard coordinates $\left(x_{1}^{\prime}, x_{2}^{\prime}, \ldots, x_{n}^{\prime}\right)$, find the standard coordinates $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$.

It turns out that

$$
\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right)=\left(\begin{array}{cccc}
u_{11} & u_{12} & \ldots & u_{1 n} \\
u_{21} & u_{22} & \ldots & u_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
u_{n 1} & u_{n 2} & \ldots & u_{n n}
\end{array}\right)\left(\begin{array}{c}
x_{1}^{\prime} \\
x_{2}^{\prime} \\
\vdots \\
x_{n}^{\prime}
\end{array}\right) .
$$

The matrix $U=\left(u_{i j}\right)$ does not depend on the vector \mathbf{v}.
Columns of U are coordinates of vectors
$\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{n}$ with respect to the standard basis.
U is called the transition matrix from the basis
$\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{n}$ to the standard basis $\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{n}$.
This solves Problem 2. To solve Problem 1, we have to use the inverse matrix U^{-1}, which is the transition matrix from $\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}$ to $\mathbf{u}_{1}, \ldots, \mathbf{u}_{n}$.

Problem. Find coordinates of the vector $\mathbf{x}=(1,2,3)$ with respect to the basis $\mathbf{u}_{1}=(1,1,0), \mathbf{u}_{2}=(0,1,1), \mathbf{u}_{3}=(1,1,1)$.
The nonstandard coordinates $\left(x^{\prime}, y^{\prime}, z^{\prime}\right)$ of \mathbf{x} satisfy

$$
\left(\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right)=U\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right),
$$

where U is the transition matrix from the standard basis $\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}$ to the basis $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}$.

The transition matrix from $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}$ to $\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}$ is

$$
U_{0}=\left(\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right)=\left(\begin{array}{l|l|l}
1 & 0 & 1 \\
1 & 1 & 1 \\
0 & 1 & 1
\end{array}\right) .
$$

The transition matrix from $\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}$ to $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}$ is the inverse matrix: $U=U_{0}^{-1}$.

The inverse matrix can be computed using row reduction.
$\left(U_{0} \mid I\right)=\left(\begin{array}{lll|lll}1 & 0 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1\end{array}\right)$
$\rightarrow\left(\begin{array}{rrr|rrr}1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & -1 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1\end{array}\right) \rightarrow\left(\begin{array}{lll|rrr}1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & -1 & 1 & 0 \\ 0 & 0 & 1 & 1 & -1 & 1\end{array}\right)$
$\rightarrow\left(\begin{array}{rrr|rrr}1 & 0 & 0 & 0 & 1 & -1 \\ 0 & 1 & 0 & -1 & 1 & 0 \\ 0 & 0 & 1 & 1 & -1 & 1\end{array}\right)=\left(I \mid U_{0}^{-1}\right)$
Thus

$$
\left(\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right)=\left(\begin{array}{rrr}
0 & 1 & -1 \\
-1 & 1 & 0 \\
1 & -1 & 1
\end{array}\right)\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right)=\left(\begin{array}{r}
-1 \\
1 \\
2
\end{array}\right) .
$$

