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Linear Algebra

Lecture 30:
The Gram-Schmidt process (continued).

Eigenvalues and eigenvectors.
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Orthogonal projection

Theorem Let V be an inner product space and V0

be a finite-dimensional subspace of V . Then any
vector x ∈ V is uniquely represented as x = p+ o,
where p ∈ V0 and o ⊥ V0.

The component p is the orthogonal projection of
the vector x onto the subspace V0. The distance
from x to the subspace V0 is ‖o‖.

If v1, v2, . . . , vn is an orthogonal basis for V0 then

p =
〈x, v1〉
〈v1, v1〉

v1 +
〈x, v2〉
〈v2, v2〉

v2 + · · ·+ 〈x, vn〉
〈vn, vn〉

vn.



The Gram-Schmidt orthogonalization process

Let V be a vector space with an inner product.

Suppose x1, x2, . . . , xn is a basis for V . Let

v1 = x1,

v2 = x2 −
〈x2, v1〉
〈v1, v1〉

v1,

v3 = x3 −
〈x3, v1〉
〈v1, v1〉

v1 −
〈x3, v2〉
〈v2, v2〉

v2,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

vn = xn −
〈xn, v1〉
〈v1, v1〉

v1 − · · · − 〈xn, vn−1〉
〈vn−1, vn−1〉

vn−1.

Then v1, v2, . . . , vn is an orthogonal basis for V .



Span(v1,v2) = Span(x1,x2)
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Any basis

x1, x2, . . . , xn
−→ Orthogonal basis

v1, v2, . . . , vn

Properties of the Gram-Schmidt process:

• vk = xk − (α1x1 + · · ·+ αk−1xk−1), 1 ≤ k ≤ n;

• the span of v1, . . . , vk is the same as the span
of x1, . . . , xk ;

• vk is orthogonal to x1, . . . , xk−1;

• vk = xk − pk , where pk is the orthogonal
projection of the vector xk on the subspace spanned

by x1, . . . , xk−1;

• ‖vk‖ is the distance from xk to the subspace
spanned by x1, . . . , xk−1.



Problem. Find the distance from the point
y = (0, 0, 0, 1) to the subspace V ⊂ R

4 spanned

by vectors x1 = (1,−1, 1,−1), x2 = (1, 1, 3,−1),
and x3 = (−3, 7, 1, 3).

First we apply the Gram-Schmidt process to vectors x1, x2, x3
and obtain an orthogonal basis v1, v2, v3 for the subspace V .
Next we compute the orthogonal projection p of the vector y
onto V :

p =
〈y, v1〉
〈v1, v1〉

v1 +
〈y, v2〉
〈v2, v2〉

v2 +
〈y, v3〉
〈v3, v3〉

v3.

Then the distance from y to V equals ‖y − p‖.

Alternatively, we can apply the Gram-Schmidt process to
vectors x1, x2, x3, y. We should obtain an orthogonal system
v1, v2, v3, v4. Then the desired distance will be ‖v4‖.



x1 = (1,−1, 1,−1), x2 = (1, 1, 3,−1),
x3 = (−3, 7, 1, 3), y = (0, 0, 0, 1).

v1 = x1 = (1,−1, 1,−1),

v2 = x2−
〈x2, v1〉
〈v1, v1〉

v1 = (1, 1, 3,−1)− 4

4
(1,−1, 1,−1)

= (0, 2, 2, 0),

v3 = x3 −
〈x3, v1〉
〈v1, v1〉

v1 −
〈x3, v2〉
〈v2, v2〉

v2

= (−3, 7, 1, 3)− −12

4
(1,−1, 1,−1)− 16

8
(0, 2, 2, 0)

= (0, 0, 0, 0).



The Gram-Schmidt process can be used to check

linear independence of vectors! It failed because

the vector x3 is a linear combination of x1 and x2.
V is a plane, not a 3-dimensional subspace. To fix

things, it is enough to drop x3, i.e., we should
orthogonalize vectors x1, x2, y.

ṽ3 = y − 〈y, v1〉
〈v1, v1〉

v1 −
〈y, v2〉
〈v2, v2〉

v2

= (0, 0, 0, 1)− −1

4
(1,−1, 1,−1)− 0

8
(0, 2, 2, 0)

= (1/4,−1/4, 1/4, 3/4).

|ṽ3| =
∣

∣

∣

(1

4
,−1

4
,
1

4
,
3

4

)∣

∣

∣
=

1

4
|(1,−1, 1, 3)| =

√
12

4
=

√
3

2
.



Problem. Find the distance from the point
z = (0, 0, 1, 0) to the plane Π that passes through

the point x0 = (1, 0, 0, 0) and is parallel to the
vectors v1 = (1,−1, 1,−1) and v2 = (0, 2, 2, 0).

The plane Π is not a subspace of R4 as it does not

pass through the origin. Let Π0 = Span(v1, v2).
Then Π = Π0 + x0.

Hence the distance from the point z to the plane Π
is the same as the distance from the point z− x0
to the plane Π− x0 = Π0.

We shall apply the Gram-Schmidt process to vectors
v1, v2, z− x0. This will yield an orthogonal system

w1,w2,w3. The desired distance will be ‖w3‖.



v1 = (1,−1, 1,−1), v2 = (0, 2, 2, 0), z− x0 = (−1, 0, 1, 0).

w1 = v1 = (1,−1, 1,−1),

w2 = v2 −
〈v2,w1〉
〈w1,w1〉

w1 = v2 = (0, 2, 2, 0) as v2 ⊥ v1.

w3 = (z− x0)−
〈z− x0,w1〉
〈w1,w1〉

w1 −
〈z− x0,w2〉
〈w2,w2〉

w2

= (−1, 0, 1, 0)− 0

4
(1,−1, 1,−1)− 2

8
(0, 2, 2, 0)

= (−1,−1/2, 1/2, 0).

|w3| =
∣

∣

∣

(

−1,−1

2
,
1

2
, 0
)∣

∣

∣
=

1

2
|(−2,−1, 1, 0)| =

√
6

2
=

√

3

2
.



Problem. Approximate the function f (x) = ex

on the interval [−1, 1] by a quadratic polynomial.

The best approximation would be a polynomial p(x)
that minimizes the distance relative to the uniform

norm:
‖f − p‖∞ = max

|x |≤1

|f (x)− p(x)|.

However there is no analytic way to find such a
polynomial. Instead, one can find a “least squares”

approximation that minimizes the integral norm

‖f − p‖2 =
(
∫

1

−1

|f (x)− p(x)|2 dx
)1/2

.



The norm ‖ · ‖2 is induced by the inner product

〈g , h〉 =
∫

1

−1

g(x)h(x) dx .

Therefore ‖f − p‖2 is minimal if p is the
orthogonal projection of the function f on the
subspace P3 of quadratic polynomials.

We should apply the Gram-Schmidt process to the
polynomials 1, x , x2 which form a basis for P3.

This would yield an orthogonal basis p0, p1, p2.
Then

p(x) =
〈f , p0〉
〈p0, p0〉

p0(x) +
〈f , p1〉
〈p1, p1〉

p1(x) +
〈f , p2〉
〈p2, p2〉

p2(x).



Eigenvalues and eigenvectors

Definition. Let A be an n×n matrix. A number
λ ∈ R is called an eigenvalue of the matrix A if

Av = λv for a nonzero column vector v ∈ R
n.

The vector v is called an eigenvector of A

belonging to (or associated with) the eigenvalue λ.

Remarks. • Alternative notation:
eigenvalue = characteristic value,

eigenvector = characteristic vector.

• The zero vector is never considered an
eigenvector.



Example. A =

(

2 0

0 3

)

.

(

2 0

0 3

)(

1

0

)

=

(

2

0

)

= 2

(

1

0

)

,

(

2 0

0 3

)(

0

−2

)

=

(

0

−6

)

= 3

(

0

−2

)

.

Hence (1, 0) is an eigenvector of A belonging to the
eigenvalue 2, while (0,−2) is an eigenvector of A

belonging to the eigenvalue 3.



Example. A =

(

0 1

1 0

)

.

(

0 1

1 0

)(

1

1

)

=

(

1

1

)

,

(

0 1

1 0

)(

1

−1

)

=

(

−1

1

)

.

Hence (1, 1) is an eigenvector of A belonging to the

eigenvalue 1, while (1,−1) is an eigenvector of A
belonging to the eigenvalue −1.

Vectors v1 = (1, 1) and v2 = (1,−1) form a basis

for R2. Consider a linear operator L : R2 → R
2

given by L(x) = Ax. The matrix of L with respect

to the basis v1, v2 is B =

(

1 0

0 −1

)

.



Let A be an n×n matrix. Consider a linear
operator L : Rn → R

n given by L(x) = Ax.

Let v1, v2, . . . , vn be a nonstandard basis for Rn

and B be the matrix of the operator L with respect
to this basis.

Theorem The matrix B is diagonal if and only if
vectors v1, v2, . . . , vn are eigenvectors of A.

If this is the case, then the diagonal entries of the

matrix B are the corresponding eigenvalues of A.

Avi = λivi ⇐⇒ B =









λ1 O

λ2

. . .
O λn










