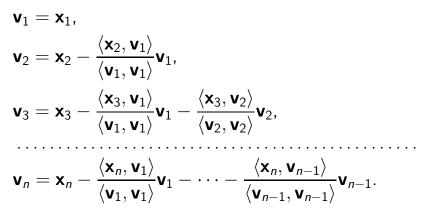

MATH 304 Linear Algebra

Lecture 30: The Gram-Schmidt process (continued). Eigenvalues and eigenvectors.

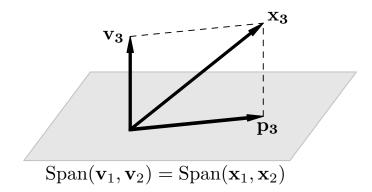
Orthogonal projection

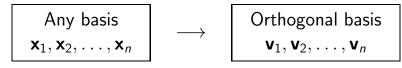
Orthogonal projection

Theorem Let V be an inner product space and V_0 be a finite-dimensional subspace of V. Then any vector $\mathbf{x} \in V$ is uniquely represented as $\mathbf{x} = \mathbf{p} + \mathbf{o}$, where $\mathbf{p} \in V_0$ and $\mathbf{o} \perp V_0$.


The component **p** is the **orthogonal projection** of the vector **x** onto the subspace V_0 . The distance from **x** to the subspace V_0 is $||\mathbf{o}||$.

If
$$\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$$
 is an orthogonal basis for V_0 then


$$\mathbf{p} = \frac{\langle \mathbf{x}, \mathbf{v}_1 \rangle}{\langle \mathbf{v}_1, \mathbf{v}_1 \rangle} \mathbf{v}_1 + \frac{\langle \mathbf{x}, \mathbf{v}_2 \rangle}{\langle \mathbf{v}_2, \mathbf{v}_2 \rangle} \mathbf{v}_2 + \dots + \frac{\langle \mathbf{x}, \mathbf{v}_n \rangle}{\langle \mathbf{v}_n, \mathbf{v}_n \rangle} \mathbf{v}_n.$$


The Gram-Schmidt orthogonalization process

Let V be a vector space with an inner product. Suppose $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n$ is a basis for V. Let

Then $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n$ is an orthogonal basis for V.

Properties of the Gram-Schmidt process:

•
$$\mathbf{v}_k = \mathbf{x}_k - (\alpha_1 \mathbf{x}_1 + \dots + \alpha_{k-1} \mathbf{x}_{k-1}), \ 1 \le k \le n;$$

• the span of $\mathbf{v}_1, \ldots, \mathbf{v}_k$ is the same as the span of $\mathbf{x}_1, \ldots, \mathbf{x}_k$;

• \mathbf{v}_k is orthogonal to $\mathbf{x}_1, \ldots, \mathbf{x}_{k-1}$;

• $\mathbf{v}_k = \mathbf{x}_k - \mathbf{p}_k$, where \mathbf{p}_k is the orthogonal projection of the vector \mathbf{x}_k on the subspace spanned by $\mathbf{x}_1, \ldots, \mathbf{x}_{k-1}$;

• $\|\mathbf{v}_k\|$ is the distance from \mathbf{x}_k to the subspace spanned by $\mathbf{x}_1, \ldots, \mathbf{x}_{k-1}$.

Problem. Find the distance from the point $\mathbf{y} = (0, 0, 0, 1)$ to the subspace $V \subset \mathbb{R}^4$ spanned by vectors $\mathbf{x}_1 = (1, -1, 1, -1)$, $\mathbf{x}_2 = (1, 1, 3, -1)$, and $\mathbf{x}_3 = (-3, 7, 1, 3)$.

First we apply the Gram-Schmidt process to vectors $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3$ and obtain an orthogonal basis $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ for the subspace V. Next we compute the orthogonal projection \mathbf{p} of the vector \mathbf{y} onto V:

$$\mathbf{p} = \frac{\langle \mathbf{y}, \mathbf{v}_1 \rangle}{\langle \mathbf{v}_1, \mathbf{v}_1 \rangle} \mathbf{v}_1 + \frac{\langle \mathbf{y}, \mathbf{v}_2 \rangle}{\langle \mathbf{v}_2, \mathbf{v}_2 \rangle} \mathbf{v}_2 + \frac{\langle \mathbf{y}, \mathbf{v}_3 \rangle}{\langle \mathbf{v}_3, \mathbf{v}_3 \rangle} \mathbf{v}_3.$$

Then the distance from **y** to V equals $\|\mathbf{y} - \mathbf{p}\|$.

Alternatively, we can apply the Gram-Schmidt process to vectors $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \mathbf{y}$. We should obtain an orthogonal system $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4$. Then the desired distance will be $\|\mathbf{v}_4\|$.

$$\begin{aligned} \mathbf{x}_{1} &= (1, -1, 1, -1), \ \mathbf{x}_{2} &= (1, 1, 3, -1), \\ \mathbf{x}_{3} &= (-3, 7, 1, 3), \ \mathbf{y} &= (0, 0, 0, 1). \end{aligned}$$
$$\mathbf{v}_{1} &= \mathbf{x}_{1} &= (1, -1, 1, -1), \\ \mathbf{v}_{2} &= \mathbf{x}_{2} - \frac{\langle \mathbf{x}_{2}, \mathbf{v}_{1} \rangle}{\langle \mathbf{v}_{1}, \mathbf{v}_{1} \rangle} \mathbf{v}_{1} &= (1, 1, 3, -1) - \frac{4}{4} (1, -1, 1, -1) \\ &= (0, 2, 2, 0), \\ \mathbf{v}_{3} &= \mathbf{x}_{3} - \frac{\langle \mathbf{x}_{3}, \mathbf{v}_{1} \rangle}{\langle \mathbf{v}_{1}, \mathbf{v}_{1} \rangle} \mathbf{v}_{1} - \frac{\langle \mathbf{x}_{3}, \mathbf{v}_{2} \rangle}{\langle \mathbf{v}_{2}, \mathbf{v}_{2} \rangle} \mathbf{v}_{2} \\ &= (-3, 7, 1, 3) - \frac{-12}{4} (1, -1, 1, -1) - \frac{16}{8} (0, 2, 2, 0) \\ &= (0, 0, 0, 0). \end{aligned}$$

The Gram-Schmidt process can be used to check linear independence of vectors! It failed because the vector \mathbf{x}_3 is a linear combination of \mathbf{x}_1 and \mathbf{x}_2 . V is a plane, not a 3-dimensional subspace. To fix things, it is enough to drop \mathbf{x}_3 , i.e., we should orthogonalize vectors $\mathbf{x}_1, \mathbf{x}_2, \mathbf{y}$.

$$\begin{split} \tilde{\mathbf{v}}_3 &= \mathbf{y} - \frac{\langle \mathbf{y}, \mathbf{v}_1 \rangle}{\langle \mathbf{v}_1, \mathbf{v}_1 \rangle} \mathbf{v}_1 - \frac{\langle \mathbf{y}, \mathbf{v}_2 \rangle}{\langle \mathbf{v}_2, \mathbf{v}_2 \rangle} \mathbf{v}_2 \\ &= (0, 0, 0, 1) - \frac{-1}{4} (1, -1, 1, -1) - \frac{0}{8} (0, 2, 2, 0) \\ &= (1/4, -1/4, 1/4, 3/4). \\ \tilde{\mathbf{v}}_3 &| = \left| \left(\frac{1}{4}, -\frac{1}{4}, \frac{1}{4}, \frac{3}{4} \right) \right| = \frac{1}{4} \left| (1, -1, 1, 3) \right| = \frac{\sqrt{12}}{4} = \frac{\sqrt{3}}{2}. \end{split}$$

Problem. Find the distance from the point $\mathbf{z} = (0, 0, 1, 0)$ to the plane Π that passes through the point $\mathbf{x}_0 = (1, 0, 0, 0)$ and is parallel to the vectors $\mathbf{v}_1 = (1, -1, 1, -1)$ and $\mathbf{v}_2 = (0, 2, 2, 0)$.

The plane Π is not a subspace of \mathbb{R}^4 as it does not pass through the origin. Let $\Pi_0 = \text{Span}(\mathbf{v}_1, \mathbf{v}_2)$. Then $\Pi = \Pi_0 + \mathbf{x}_0$.

Hence the distance from the point \mathbf{z} to the plane Π is the same as the distance from the point $\mathbf{z} - \mathbf{x}_0$ to the plane $\Pi - \mathbf{x}_0 = \Pi_0$.

We shall apply the Gram-Schmidt process to vectors $\mathbf{v}_1, \mathbf{v}_2, \mathbf{z} - \mathbf{x}_0$. This will yield an orthogonal system $\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3$. The desired distance will be $\|\mathbf{w}_3\|$.

$${f v}_1=(1,-1,1,-1)$$
, ${f v}_2=(0,2,2,0)$, ${f z}-{f x}_0=(-1,0,1,0)$.

$$\begin{split} \mathbf{w}_1 &= \mathbf{v}_1 = (1, -1, 1, -1), \\ \mathbf{w}_2 &= \mathbf{v}_2 - \frac{\langle \mathbf{v}_2, \mathbf{w}_1 \rangle}{\langle \mathbf{w}_1, \mathbf{w}_1 \rangle} \mathbf{w}_1 = \mathbf{v}_2 = (0, 2, 2, 0) \text{ as } \mathbf{v}_2 \perp \mathbf{v}_1. \\ \mathbf{w}_3 &= (\mathbf{z} - \mathbf{x}_0) - \frac{\langle \mathbf{z} - \mathbf{x}_0, \mathbf{w}_1 \rangle}{\langle \mathbf{w}_1, \mathbf{w}_1 \rangle} \mathbf{w}_1 - \frac{\langle \mathbf{z} - \mathbf{x}_0, \mathbf{w}_2 \rangle}{\langle \mathbf{w}_2, \mathbf{w}_2 \rangle} \mathbf{w}_2 \\ &= (-1, 0, 1, 0) - \frac{0}{4} (1, -1, 1, -1) - \frac{2}{8} (0, 2, 2, 0) \\ &= (-1, -1/2, 1/2, 0). \\ |\mathbf{w}_3| &= \left| \left(-1, -\frac{1}{2}, \frac{1}{2}, 0 \right) \right| = \frac{1}{2} \left| (-2, -1, 1, 0) \right| = \frac{\sqrt{6}}{2} = \sqrt{\frac{3}{2}}. \end{split}$$

Problem. Approximate the function $f(x) = e^x$ on the interval [-1, 1] by a quadratic polynomial.

The best approximation would be a polynomial p(x) that minimizes the distance relative to the uniform norm:

$$\|f-p\|_\infty=\max_{|x|\leq 1}|f(x)-p(x)|.$$

However there is no analytic way to find such a polynomial. Instead, one can find a *"least squares"* approximation that minimizes the integral norm

$$||f - p||_2 = \left(\int_{-1}^1 |f(x) - p(x)|^2 dx\right)^{1/2}$$

The norm $\|\cdot\|_2$ is induced by the inner product $\langle g, h \rangle = \int_{-1}^1 g(x)h(x) \, dx.$

Therefore $||f - p||_2$ is minimal if p is the orthogonal projection of the function f on the subspace \mathcal{P}_3 of quadratic polynomials.

We should apply the Gram-Schmidt process to the polynomials $1, x, x^2$ which form a basis for \mathcal{P}_3 . This would yield an orthogonal basis p_0, p_1, p_2 . Then

$$p(x) = rac{\langle f, p_0
angle}{\langle p_0, p_0
angle} p_0(x) + rac{\langle f, p_1
angle}{\langle p_1, p_1
angle} p_1(x) + rac{\langle f, p_2
angle}{\langle p_2, p_2
angle} p_2(x).$$

Eigenvalues and eigenvectors

Definition. Let A be an $n \times n$ matrix. A number $\lambda \in \mathbb{R}$ is called an **eigenvalue** of the matrix A if $A\mathbf{v} = \lambda \mathbf{v}$ for a nonzero column vector $\mathbf{v} \in \mathbb{R}^n$. The vector \mathbf{v} is called an **eigenvector** of A belonging to (or associated with) the eigenvalue λ .

Remarks. • Alternative notation: eigenvalue = characteristic value, eigenvector = characteristic vector.

• The zero vector is never considered an eigenvector.

Example.
$$A = \begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix}.$$
$$\begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 2 \\ 0 \end{pmatrix} = 2 \begin{pmatrix} 1 \\ 0 \end{pmatrix},$$
$$\begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix} \begin{pmatrix} 0 \\ -2 \end{pmatrix} = \begin{pmatrix} 0 \\ -6 \end{pmatrix} = 3 \begin{pmatrix} 0 \\ -2 \end{pmatrix}.$$

Hence (1,0) is an eigenvector of A belonging to the eigenvalue 2, while (0,-2) is an eigenvector of A belonging to the eigenvalue 3.

Example.
$$A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}.$$
$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \quad \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \begin{pmatrix} -1 \\ 1 \end{pmatrix}.$$

Hence (1, 1) is an eigenvector of A belonging to the eigenvalue 1, while (1, -1) is an eigenvector of A belonging to the eigenvalue -1.

Vectors $\mathbf{v}_1 = (1, 1)$ and $\mathbf{v}_2 = (1, -1)$ form a basis for \mathbb{R}^2 . Consider a linear operator $L : \mathbb{R}^2 \to \mathbb{R}^2$ given by $L(\mathbf{x}) = A\mathbf{x}$. The matrix of L with respect to the basis $\mathbf{v}_1, \mathbf{v}_2$ is $B = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$. Let A be an $n \times n$ matrix. Consider a linear operator $L : \mathbb{R}^n \to \mathbb{R}^n$ given by $L(\mathbf{x}) = A\mathbf{x}$. Let $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ be a nonstandard basis for \mathbb{R}^n and B be the matrix of the operator L with respect to this basis.

Theorem The matrix *B* is diagonal if and only if vectors $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n$ are eigenvectors of *A*. If this is the case, then the diagonal entries of the matrix *B* are the corresponding eigenvalues of *A*.

$$A\mathbf{v}_{i} = \lambda_{i}\mathbf{v}_{i} \iff B = \begin{pmatrix} \lambda_{1} & & O \\ & \lambda_{2} & \\ & & \ddots & \\ O & & & \lambda_{n} \end{pmatrix}$$