MATH 304
 Linear Algebra

Lecture 30:

The Gram-Schmidt process (continued). Eigenvalues and eigenvectors.

Orthogonal projection

Orthogonal projection

Theorem Let V be an inner product space and V_{0} be a finite-dimensional subspace of V. Then any vector $\mathbf{x} \in V$ is uniquely represented as $\mathbf{x}=\mathbf{p}+\mathbf{o}$, where $\mathbf{p} \in V_{0}$ and $\mathbf{o} \perp V_{0}$.

The component \mathbf{p} is the orthogonal projection of the vector \mathbf{x} onto the subspace V_{0}. The distance from \mathbf{x} to the subspace V_{0} is $\|\mathbf{o}\|$.

If $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$ is an orthogonal basis for V_{0} then

$$
\mathbf{p}=\frac{\left\langle\mathbf{x}, \mathbf{v}_{1}\right\rangle}{\left\langle\mathbf{v}_{1}, \mathbf{v}_{1}\right\rangle} \mathbf{v}_{1}+\frac{\left\langle\mathbf{x}, \mathbf{v}_{2}\right\rangle}{\left\langle\mathbf{v}_{2}, \mathbf{v}_{2}\right\rangle} \mathbf{v}_{2}+\cdots+\frac{\left\langle\mathbf{x}, \mathbf{v}_{n}\right\rangle}{\left\langle\mathbf{v}_{n}, \mathbf{v}_{n}\right\rangle} \mathbf{v}_{n}
$$

The Gram-Schmidt orthogonalization process

Let V be a vector space with an inner product.
Suppose $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{n}$ is a basis for V. Let
$\mathbf{v}_{1}=\mathbf{x}_{1}$,
$\mathbf{v}_{2}=\mathbf{x}_{2}-\frac{\left\langle\mathbf{x}_{2}, \mathbf{v}_{1}\right\rangle}{\left\langle\mathbf{v}_{1}, \mathbf{v}_{1}\right\rangle} \mathbf{v}_{1}$,
$\mathbf{v}_{3}=\mathbf{x}_{3}-\frac{\left\langle\mathbf{x}_{3}, \mathbf{v}_{1}\right\rangle}{\left\langle\mathbf{v}_{1}, \mathbf{v}_{1}\right\rangle} \mathbf{v}_{1}-\frac{\left\langle\mathbf{x}_{3}, \mathbf{v}_{2}\right\rangle}{\left\langle\mathbf{v}_{2}, \mathbf{v}_{2}\right\rangle} \mathbf{v}_{2}$,
$\mathbf{v}_{n}=\mathbf{x}_{n}-\frac{\left\langle\mathbf{x}_{n}, \mathbf{v}_{1}\right\rangle}{\left\langle\mathbf{v}_{1}, \mathbf{v}_{1}\right\rangle} \mathbf{v}_{1}-\cdots-\frac{\left\langle\mathbf{x}_{n}, \mathbf{v}_{n-1}\right\rangle}{\left\langle\mathbf{v}_{n-1}, \mathbf{v}_{n-1}\right\rangle} \mathbf{v}_{n-1}$.
Then $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$ is an orthogonal basis for V.

$$
\begin{gathered}
\text { Any basis } \\
\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{n}
\end{gathered}
$$

Orthogonal basis

$$
\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}
$$

Properties of the Gram-Schmidt process:

- $\mathbf{v}_{k}=\mathbf{x}_{k}-\left(\alpha_{1} \mathbf{x}_{1}+\cdots+\alpha_{k-1} \mathbf{x}_{k-1}\right), 1 \leq k \leq n$;
- the span of $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ is the same as the span of $\mathbf{x}_{1}, \ldots, \mathbf{x}_{k}$;
- \mathbf{v}_{k} is orthogonal to $\mathbf{x}_{1}, \ldots, \mathbf{x}_{k-1}$;
- $\mathbf{v}_{k}=\mathbf{x}_{k}-\mathbf{p}_{k}$, where \mathbf{p}_{k} is the orthogonal projection of the vector \mathbf{x}_{k} on the subspace spanned by $\mathbf{x}_{1}, \ldots, \mathbf{x}_{k-1}$;
- $\left\|\mathbf{v}_{k}\right\|$ is the distance from \mathbf{x}_{k} to the subspace spanned by $\mathbf{x}_{1}, \ldots, \mathbf{x}_{k-1}$.

Problem. Find the distance from the point $\mathbf{y}=(0,0,0,1)$ to the subspace $V \subset \mathbb{R}^{4}$ spanned by vectors $\mathbf{x}_{1}=(1,-1,1,-1), \mathbf{x}_{2}=(1,1,3,-1)$, and $\mathbf{x}_{3}=(-3,7,1,3)$.

First we apply the Gram-Schmidt process to vectors $\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}$ and obtain an orthogonal basis $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ for the subspace V. Next we compute the orthogonal projection \mathbf{p} of the vector \mathbf{y} onto V :

$$
\mathbf{p}=\frac{\left\langle\mathbf{y}, \mathbf{v}_{1}\right\rangle}{\left\langle\mathbf{v}_{1}, \mathbf{v}_{1}\right\rangle} \mathbf{v}_{1}+\frac{\left\langle\mathbf{y}, \mathbf{v}_{2}\right\rangle}{\left\langle\mathbf{v}_{2}, \mathbf{v}_{2}\right\rangle} \mathbf{v}_{2}+\frac{\left\langle\mathbf{y}, \mathbf{v}_{3}\right\rangle}{\left\langle\mathbf{v}_{3}, \mathbf{v}_{3}\right\rangle} \mathbf{v}_{3} .
$$

Then the distance from \mathbf{y} to V equals $\|\mathbf{y}-\mathbf{p}\|$.
Alternatively, we can apply the Gram-Schmidt process to vectors $\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}, \mathbf{y}$. We should obtain an orthogonal system $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}$. Then the desired distance will be $\left\|\mathbf{v}_{4}\right\|$.
$\mathbf{x}_{1}=(1,-1,1,-1), \mathbf{x}_{2}=(1,1,3,-1)$,
$\mathbf{x}_{3}=(-3,7,1,3), \mathbf{y}=(0,0,0,1)$.
$\mathbf{v}_{1}=\mathbf{x}_{1}=(1,-1,1,-1)$,
$\mathbf{v}_{2}=\mathbf{x}_{2}-\frac{\left\langle\mathbf{x}_{2}, \mathbf{v}_{1}\right\rangle}{\left\langle\mathbf{v}_{1}, \mathbf{v}_{1}\right\rangle} \mathbf{v}_{1}=(1,1,3,-1)-\frac{4}{4}(1,-1,1,-1)$
$=(0,2,2,0)$,
$\mathbf{v}_{3}=\mathbf{x}_{3}-\frac{\left\langle\mathbf{x}_{3}, \mathbf{v}_{1}\right\rangle}{\left\langle\mathbf{v}_{1}, \mathbf{v}_{1}\right\rangle} \mathbf{v}_{1}-\frac{\left\langle\mathbf{x}_{3}, \mathbf{v}_{2}\right\rangle}{\left\langle\mathbf{v}_{2}, \mathbf{v}_{2}\right\rangle} \mathbf{v}_{2}$
$=(-3,7,1,3)-\frac{-12}{4}(1,-1,1,-1)-\frac{16}{8}(0,2,2,0)$
$=(0,0,0,0)$.

The Gram-Schmidt process can be used to check linear independence of vectors! It failed because the vector \mathbf{x}_{3} is a linear combination of \mathbf{x}_{1} and \mathbf{x}_{2}. V is a plane, not a 3 -dimensional subspace. To fix things, it is enough to drop \mathbf{x}_{3}, i.e., we should orthogonalize vectors $\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{y}$.
$\tilde{\mathbf{v}}_{3}=\mathbf{y}-\frac{\left\langle\mathbf{y}, \mathbf{v}_{1}\right\rangle}{\left\langle\mathbf{v}_{1}, \mathbf{v}_{1}\right\rangle} \mathbf{v}_{1}-\frac{\left\langle\mathbf{y}, \mathbf{v}_{2}\right\rangle}{\left\langle\mathbf{v}_{2}, \mathbf{v}_{2}\right\rangle} \mathbf{v}_{2}$
$=(0,0,0,1)-\frac{-1}{4}(1,-1,1,-1)-\frac{0}{8}(0,2,2,0)$
$=(1 / 4,-1 / 4,1 / 4,3 / 4)$.
$\left|\tilde{\mathbf{v}}_{3}\right|=\left|\left(\frac{1}{4},-\frac{1}{4}, \frac{1}{4}, \frac{3}{4}\right)\right|=\frac{1}{4}|(1,-1,1,3)|=\frac{\sqrt{12}}{4}=\frac{\sqrt{3}}{2}$.

Problem. Find the distance from the point $\mathbf{z}=(0,0,1,0)$ to the plane Π that passes through the point $\mathbf{x}_{0}=(1,0,0,0)$ and is parallel to the vectors $\mathbf{v}_{1}=(1,-1,1,-1)$ and $\mathbf{v}_{2}=(0,2,2,0)$.

The plane Π is not a subspace of \mathbb{R}^{4} as it does not pass through the origin. Let $\Pi_{0}=\operatorname{Span}\left(\mathbf{v}_{1}, \mathbf{v}_{2}\right)$. Then $\Pi=\Pi_{0}+\mathbf{x}_{0}$.
Hence the distance from the point \mathbf{z} to the plane Π is the same as the distance from the point $\mathbf{z}-\mathbf{x}_{0}$ to the plane $\Pi-\mathbf{x}_{0}=\Pi_{0}$.

We shall apply the Gram-Schmidt process to vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{z}-\mathbf{x}_{0}$. This will yield an orthogonal system $\mathbf{w}_{1}, \mathbf{w}_{2}, \mathbf{w}_{3}$. The desired distance will be $\left\|\mathbf{w}_{3}\right\|$.

$$
\begin{aligned}
& \mathbf{v}_{1}=\frac{(1,-1,1,-1), \mathbf{v}_{2}=(0,2,2,0), \mathbf{z}-\mathbf{x}_{0}=(-1,0,1,0) .}{\mathbf{w}_{1}=\mathbf{v}_{1}=(1,-1,1,-1),} \\
& \mathbf{w}_{2}=\mathbf{v}_{2}-\frac{\left\langle\mathbf{v}_{2}, \mathbf{w}_{1}\right\rangle}{\left\langle\mathbf{w}_{1}, \mathbf{w}_{1}\right\rangle} \mathbf{w}_{1}=\mathbf{v}_{2}=(0,2,2,0) \text { as } \mathbf{v}_{2} \perp \mathbf{v}_{1} . \\
& \mathbf{w}_{3}=\left(\mathbf{z}-\mathbf{x}_{0}\right)-\frac{\left\langle\mathbf{z}-\mathbf{x}_{0}, \mathbf{w}_{1}\right\rangle}{\left\langle\mathbf{w}_{1}, \mathbf{w}_{1}\right\rangle} \mathbf{w}_{1}-\frac{\left\langle\mathbf{z}-\mathbf{x}_{0}, \mathbf{w}_{2}\right\rangle}{\left\langle\mathbf{w}_{2}, \mathbf{w}_{2}\right\rangle} \mathbf{w}_{2} \\
& \quad=(-1,0,1,0)-\frac{0}{4}(1,-1,1,-1)-\frac{2}{8}(0,2,2,0) \\
& \quad=(-1,-1 / 2,1 / 2,0) . \\
& \left|\mathbf{w}_{3}\right|=\left|\left(-1,-\frac{1}{2}, \frac{1}{2}, 0\right)\right|=\frac{1}{2}|(-2,-1,1,0)|=\frac{\sqrt{6}}{2}=\sqrt{\frac{3}{2}} .
\end{aligned}
$$

Problem. Approximate the function $f(x)=e^{x}$ on the interval $[-1,1]$ by a quadratic polynomial.

The best approximation would be a polynomial $p(x)$ that minimizes the distance relative to the uniform norm:

$$
\|f-p\|_{\infty}=\max _{|x| \leq 1}|f(x)-p(x)| .
$$

However there is no analytic way to find such a polynomial. Instead, one can find a "least squares" approximation that minimizes the integral norm

$$
\|f-p\|_{2}=\left(\int_{-1}^{1}|f(x)-p(x)|^{2} d x\right)^{1 / 2}
$$

The norm $\|\cdot\|_{2}$ is induced by the inner product

$$
\langle g, h\rangle=\int_{-1}^{1} g(x) h(x) d x
$$

Therefore $\|f-p\|_{2}$ is minimal if p is the orthogonal projection of the function f on the subspace \mathcal{P}_{3} of quadratic polynomials.

We should apply the Gram-Schmidt process to the polynomials $1, x, x^{2}$ which form a basis for \mathcal{P}_{3}.
This would yield an orthogonal basis p_{0}, p_{1}, p_{2}.
Then

$$
p(x)=\frac{\left\langle f, p_{0}\right\rangle}{\left\langle p_{0}, p_{0}\right\rangle} p_{0}(x)+\frac{\left\langle f, p_{1}\right\rangle}{\left\langle p_{1}, p_{1}\right\rangle} p_{1}(x)+\frac{\left\langle f, p_{2}\right\rangle}{\left\langle p_{2}, p_{2}\right\rangle} p_{2}(x)
$$

Eigenvalues and eigenvectors

Definition. Let A be an $n \times n$ matrix. A number $\lambda \in \mathbb{R}$ is called an eigenvalue of the matrix A if $A \mathbf{v}=\lambda \mathbf{v}$ for a nonzero column vector $\mathbf{v} \in \mathbb{R}^{n}$. The vector \mathbf{v} is called an eigenvector of A belonging to (or associated with) the eigenvalue λ.

Remarks. - Alternative notation: eigenvalue $=$ characteristic value, eigenvector $=$ characteristic vector.

- The zero vector is never considered an eigenvector.

Example. $A=\left(\begin{array}{ll}2 & 0 \\ 0 & 3\end{array}\right)$.

$$
\begin{aligned}
\left(\begin{array}{ll}
2 & 0 \\
0 & 3
\end{array}\right)\binom{1}{0} & =\binom{2}{0}=2\binom{1}{0}, \\
\left(\begin{array}{ll}
2 & 0 \\
0 & 3
\end{array}\right)\binom{0}{-2} & =\binom{0}{-6}=3\binom{0}{-2} .
\end{aligned}
$$

Hence $(1,0)$ is an eigenvector of A belonging to the eigenvalue 2 , while $(0,-2)$ is an eigenvector of A belonging to the eigenvalue 3 .

Example. $\quad A=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$.
$\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)\binom{1}{1}=\binom{1}{1}, \quad\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)\binom{1}{-1}=\binom{-1}{1}$.
Hence $(1,1)$ is an eigenvector of A belonging to the eigenvalue 1 , while $(1,-1)$ is an eigenvector of A belonging to the eigenvalue -1 .
Vectors $\mathbf{v}_{1}=(1,1)$ and $\mathbf{v}_{2}=(1,-1)$ form a basis for \mathbb{R}^{2}. Consider a linear operator $L: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ given by $L(\mathbf{x})=A \mathbf{x}$. The matrix of L with respect to the basis $\mathbf{v}_{1}, \mathbf{v}_{2}$ is $B=\left(\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right)$.

Let A be an $n \times n$ matrix. Consider a linear operator $L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ given by $L(\mathbf{x})=A \mathbf{x}$.
Let $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$ be a nonstandard basis for \mathbb{R}^{n} and B be the matrix of the operator L with respect to this basis.

Theorem The matrix B is diagonal if and only if vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$ are eigenvectors of A. If this is the case, then the diagonal entries of the matrix B are the corresponding eigenvalues of A.

$$
A \mathbf{v}_{i}=\lambda_{i} \mathbf{v}_{i} \Longleftrightarrow B=\left(\begin{array}{llll}
\lambda_{1} & & & O \\
& \lambda_{2} & & \\
& & \ddots & \\
O & & & \lambda_{n}
\end{array}\right)
$$

