Quiz 1: Solution

Problem. Find a matrix $\operatorname{exponential} \exp (A)$, where $A=\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right)$.
Solution: $\exp (A)=\frac{1}{2}\left(\begin{array}{ll}e^{2}+1 & e^{2}-1 \\ e^{2}-1 & e^{2}+1\end{array}\right)$.
The diagonalization of the matrix A is $A=U D U^{-1}$, where

$$
D=\left(\begin{array}{ll}
0 & 0 \\
0 & 2
\end{array}\right), \quad U=\left(\begin{array}{rr}
-1 & 1 \\
1 & 1
\end{array}\right) .
$$

Namely, 0 and 2 are the eigenvalues of A while $\binom{-1}{1}$ and $\binom{1}{1}$ are the associated eigenvectors. Then

$$
e^{A}=U e^{D} U^{-1}=\left(\begin{array}{rr}
-1 & 1 \\
1 & 1
\end{array}\right)\left(\begin{array}{rr}
e^{0} & 0 \\
0 & e^{2}
\end{array}\right)\left(\begin{array}{rr}
-1 & 1 \\
1 & 1
\end{array}\right)^{-1} .
$$

Alternative solution: One can check that $A^{2}=2 A$. Then $A^{3}=A^{2} A=(2 A) A=2 A^{2}=2(2 A)=2^{2} A$, $A^{4}=A^{3} A=\left(2^{2} A\right) A=2^{2} A^{2}=2^{2}(2 A)=2^{3} A$, and so on. In general, $A^{n}=2^{n-1} A$ for any integer $n \geq 1$. Therefore

$$
\exp (A)=I+A+\frac{1}{2!} A^{2}+\cdots+\frac{1}{n!} A^{n}+\cdots=I+c A
$$

where

$$
c=1+\frac{2}{2!}+\cdots+\frac{2^{n-1}}{n!}+\cdots
$$

We know that

$$
e^{2}=1+2+\frac{2^{2}}{2!}+\cdots+\frac{2^{n}}{n!}+\cdots
$$

It follows that $c=\left(e^{2}-1\right) / 2$. Thus

$$
\exp (A)=I+\frac{e^{2}-1}{2} A
$$

