## Quiz 1: Solution

Problem. Find a matrix $\operatorname{exponential} \exp (A)$, where $A=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$.
Solution: $\quad \exp (A)=\frac{1}{2}\left(\begin{array}{ll}e+e^{-1} & e-e^{-1} \\ e-e^{-1} & e+e^{-1}\end{array}\right)$.
The diagonalization of the matrix $A$ is $A=U D U^{-1}$, where

$$
D=\left(\begin{array}{rr}
-1 & 0 \\
0 & 1
\end{array}\right), \quad U=\left(\begin{array}{rr}
-1 & 1 \\
1 & 1
\end{array}\right) .
$$

Namely, -1 and 1 are the eigenvalues of $A$ while $\binom{-1}{1}$ and $\binom{1}{1}$ are the associated eigenvectors. Then

$$
e^{A}=U e^{D} U^{-1}=\left(\begin{array}{rr}
-1 & 1 \\
1 & 1
\end{array}\right)\left(\begin{array}{cc}
e^{-1} & 0 \\
0 & e
\end{array}\right)\left(\begin{array}{rr}
-1 & 1 \\
1 & 1
\end{array}\right)^{-1} .
$$

Alternative solution: One can check that $A^{2}=I$. It follows that $A^{n}=I$ for any even integer $n>0$ and $A^{n}=A$ for any odd integer $n>0$. Therefore

$$
\exp (A)=I+A+\frac{1}{2!} A^{2}+\cdots+\frac{1}{n!} A^{n}+\cdots=c_{0} I+c_{1} A,
$$

where

$$
\begin{gathered}
c_{0}=1+\frac{1}{2!}+\frac{1}{4!}+\cdots+\frac{1}{(2 k)!}+\cdots \\
c_{1}=1+\frac{1}{3!}+\frac{1}{5!}+\cdots+\frac{1}{(2 k+1)!}+\cdots
\end{gathered}
$$

We know that

$$
\begin{gathered}
e=1+1+\frac{1}{2!}+\frac{1}{3!}+\cdots+\frac{1}{n!}+\cdots, \\
e^{-1}=1-1+\frac{1}{2!}-\frac{1}{3!}+\cdots+(-1)^{n} \frac{1}{n!}+\cdots
\end{gathered}
$$

It follows that $c_{0}=\left(e+e^{-1}\right) / 2$ and $c_{1}=\left(e-e^{-1}\right) / 2$. Thus

$$
\exp (A)=\frac{e+e^{-1}}{2} I+\frac{e-e^{-1}}{2} A
$$

