Quiz 2: Solution

Problem. Let L denote a linear operator on \mathbb{R}^{3} that acts on vectors from the standard basis as follows: $L\left(\mathbf{e}_{1}\right)=-\mathbf{e}_{3}, L\left(\mathbf{e}_{2}\right)=\mathbf{e}_{1}, L\left(\mathbf{e}_{3}\right)=-\mathbf{e}_{2}$.
(i) Explain why L is a rigid motion.
(ii) Is L a rotation about an axis? Is L a reflection in a plane? Explain your answers.
(iii) If L is a rotation, find the axis and the angle. If L is a reflection, find the plane. If L is neither rotation nor reflection, describe the action of L in geometric terms.

The matrix of the operator L (relative to the standard basis) is

$$
M=\left(\begin{array}{rrr}
0 & 1 & 0 \\
0 & 0 & -1 \\
-1 & 0 & 0
\end{array}\right) .
$$

This matrix is orthogonal since its columns form an orthonormal set (or, equivalently, since $M^{T} M=I$). Therefore L is a rigid motion. According to the classification of linear isometries in \mathbb{R}^{3}, L is either a rotation about an axis, or a reflection in a plane, or the composition of two. Since $\operatorname{det} M=1>0$, the transformation L preserves orientation. Hence L is a rotation.

As L is a rotation about an axis, the matrix M is similar to

$$
\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \phi & -\sin \phi \\
0 & \sin \phi & \cos \phi
\end{array}\right),
$$

where ϕ is the angle of rotation. Similar matrices have the same trace (since similar matrices have the same characteristic polynomial and the trace is one of its coefficients). The trace of M is 0 . Hence $1+2 \cos \phi=0$. Then $\cos \phi=-1 / 2$ so that $\phi=2 \pi / 3$.

The axis of the rotation L is the set of all points fixed by L. Since $L(\mathbf{v})=M \mathbf{v}$ for all column vectors $\mathbf{v} \in \mathbb{R}^{3}$, the axis coincides with the eigenspace of the matrix M associated to the eigenvalue 1 . To find the eigenspace, we convert the matrix $M-I$ into reduced row echelon form:

$$
\begin{aligned}
M-I= & \left(\begin{array}{rrr}
-1 & 1 & 0 \\
0 & -1 & -1 \\
-1 & 0 & -1
\end{array}\right) \rightarrow\left(\begin{array}{rrr}
1 & -1 & 0 \\
0 & -1 & -1 \\
-1 & 0 & -1
\end{array}\right) \rightarrow\left(\begin{array}{rrr}
1 & -1 & 0 \\
0 & -1 & -1 \\
0 & -1 & -1
\end{array}\right) \\
& \rightarrow\left(\begin{array}{rrr}
1 & -1 & 0 \\
0 & 1 & 1 \\
0 & -1 & -1
\end{array}\right) \rightarrow\left(\begin{array}{rrr}
1 & -1 & 0 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right) \rightarrow\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right) .
\end{aligned}
$$

Now a vector $\mathbf{v}=(x, y, z)$ belongs to the eigenspace if and only if $x+z=y+z=0$. The general solution of the system is $x=y=-t, z=t$, where $t \in \mathbb{R}$. Thus the axis of rotation is the line spanned by the vector $(1,1,-1)$.

Alternative solution: The operator L maps the standard basis, which is orthonormal, to another orthonormal basis. Therefore L is a rigid motion. According to the classification of linear isometries in \mathbb{R}^{3}, L is either a rotation about an axis, or a reflection in a plane, or the composition of two.

Note that $L^{3}\left(\mathbf{e}_{1}\right)=L\left(L\left(L\left(\mathbf{e}_{1}\right)\right)\right)=L\left(L\left(-\mathbf{e}_{3}\right)\right)=L\left(-L\left(\mathbf{e}_{3}\right)\right)=L\left(-\left(-\mathbf{e}_{2}\right)\right)=L\left(\mathbf{e}_{2}\right)=\mathbf{e}_{1}$. Likewise, $L^{3}\left(\mathbf{e}_{2}\right)=\mathbf{e}_{2}$ and $L^{3}\left(\mathbf{e}_{3}\right)=\mathbf{e}_{3}$. Since L^{3} is linear, it is the identity map. Now it follows that L preserves orientation and so is a rotation. Let ϕ be the angle of rotation, $0 \leq \phi \leq \pi$. Then L^{3} is a rotation by 3ϕ. Since L^{3} is the identity, we obtain that $3 \phi=2 \pi$.

The axis of the rotation L is the set of all points fixed by L. For any vector $(x, y, z) \in \mathbb{R}^{3}$ we have

$$
L(x, y, z)=L\left(x \mathbf{e}_{1}+y \mathbf{e}_{2}+z \mathbf{e}_{3}\right)=x L\left(\mathbf{e}_{1}\right)+y L\left(\mathbf{e}_{2}\right)+z L\left(\mathbf{e}_{3}\right)=-x \mathbf{e}_{3}+y \mathbf{e}_{1}-z \mathbf{e}_{2}=(y,-z,-x) .
$$

It follows that $L(x, y, z)=(x, y, z)$ if and only if $x=y=-z$. Thus the axis of the rotation is the line spanned by the vector $(1,1,-1)$.

