Suggested homework for Quiz 11

Problem 1. Consider a linear operator $K: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ given by

$$
K(\mathbf{x})=C \mathbf{x}, \quad \text { where } \quad C=\frac{1}{3}\left(\begin{array}{rrr}
1 & -2 & 2 \\
2 & -1 & -2 \\
2 & 2 & 1
\end{array}\right)
$$

(i) Explain why K is a rigid motion and, specifically, a rotation about an axis.
(ii) Find the axis of rotation.
(iii) Find the angle of rotation.

Problem 2. Let L denote a linear operator on \mathbb{R}^{3} that acts on vectors from the standard basis as follows: $L\left(\mathbf{e}_{1}\right)=\mathbf{e}_{3}, L\left(\mathbf{e}_{2}\right)=\mathbf{e}_{1}, L\left(\mathbf{e}_{3}\right)=\mathbf{e}_{2}$.
(i) Explain why L is a rigid motion.
(ii) Is L a rotation about an axis? Is L a reflection in a plane? Explain your answers.
(iii) If L is a rotation, find the axis and the angle. If L is a reflection, find the plane. If L is neither rotation nor reflection, describe the action of L in geometric terms.

Problem 3. Find the matrix of the rotation by 180° about the line spanned by the vector $\mathbf{a}=(1,1,1)$.

Problem 4. Find the matrix of the reflection in the plane $x-y+z=0$.

Problem 5. Let R_{1} be the counterclockwise rotation of \mathbb{R}^{3} about the x-axis by 90° and R_{2} be the clockwise rotation of \mathbb{R}^{3} about the z-axis by 90°. The composition $S=R_{2} \circ R_{1}$ of these two transformations is also a rotation about an axis. Find the angle of the rotation S.

