Suggested homework for Quiz 11

Problem 1. Consider a linear operator $K : \mathbb{R}^3 \to \mathbb{R}^3$ given by

$$K(\mathbf{x}) = C\mathbf{x}$$
, where $C = \frac{1}{3} \begin{pmatrix} 1 & -2 & 2\\ 2 & -1 & -2\\ 2 & 2 & 1 \end{pmatrix}$.

(i) Explain why K is a rigid motion and, specifically, a rotation about an axis.

(ii) Find the axis of rotation.

(iii) Find the angle of rotation.

Problem 2. Let *L* denote a linear operator on \mathbb{R}^3 that acts on vectors from the standard basis as follows: $L(\mathbf{e}_1) = \mathbf{e}_3$, $L(\mathbf{e}_2) = \mathbf{e}_1$, $L(\mathbf{e}_3) = \mathbf{e}_2$.

(i) Explain why L is a rigid motion.

(ii) Is L a rotation about an axis? Is L a reflection in a plane? Explain your answers.

(iii) If L is a rotation, find the axis and the angle. If L is a reflection, find the plane. If L is neither rotation nor reflection, describe the action of L in geometric terms.

Problem 3. Find the matrix of the rotation by 180° about the line spanned by the vector $\mathbf{a} = (1, 1, 1)$.

Problem 4. Find the matrix of the reflection in the plane x - y + z = 0.

Problem 5. Let R_1 be the counterclockwise rotation of \mathbb{R}^3 about the *x*-axis by 90° and R_2 be the clockwise rotation of \mathbb{R}^3 about the *z*-axis by 90°. The composition $S = R_2 \circ R_1$ of these two transformations is also a rotation about an axis. Find the angle of the rotation S.