MATH 304
 Linear Algebra

Lecture 12:
Vector spaces (continued).
Subspaces of vector spaces.

Abstract vector space

A vector space is a set V equipped with two operations, addition $V \times V \ni(\mathbf{x}, \mathbf{y}) \mapsto \mathbf{x}+\mathbf{y} \in V$ and scalar multiplication $\mathbb{R} \times V \ni(r, \mathbf{x}) \mapsto r \mathbf{x} \in V$, that have the following properties:
A1. $\mathbf{x}+\mathbf{y}=\mathbf{y}+\mathbf{x}$ for all $\mathbf{x}, \mathbf{y} \in V$;
A2. $(\mathbf{x}+\mathbf{y})+\mathbf{z}=\mathbf{x}+(\mathbf{y}+\mathbf{z})$ for all $\mathbf{x}, \mathbf{y}, \mathbf{z} \in V$;
A3. there exists an element of V, called the zero vector and denoted $\mathbf{0}$, such that $\mathbf{x}+\mathbf{0}=\mathbf{0}+\mathbf{x}=\mathbf{x}$ for all $\mathbf{x} \in V$;
A4. for any $\mathbf{x} \in V$ there exists an element of V, denoted $-\mathbf{x}$, such that $\mathbf{x}+(-\mathbf{x})=(-\mathbf{x})+\mathbf{x}=\mathbf{0}$;
A5. $r(\mathbf{x}+\mathbf{y})=r \mathbf{x}+r \mathbf{y}$ for all $r \in \mathbb{R}$ and $\mathbf{x}, \mathbf{y} \in V$;
A6. $(r+s) \mathbf{x}=r \mathbf{x}+s \mathbf{x}$ for all $r, s \in \mathbb{R}$ and $\mathbf{x} \in V$;
A7. $(r s) \mathbf{x}=r(s \mathbf{x})$ for all $r, s \in \mathbb{R}$ and $\mathbf{x} \in V$;
A8. $1 \mathbf{x}=\mathbf{x}$ for all $\mathbf{x} \in V$.

Additional properties of vector spaces

- The zero vector is unique.
- For any $\mathbf{x} \in V$, the negative $-\mathbf{x}$ is unique.
$\cdot \mathbf{x}+\mathbf{y}=\mathbf{z} \Longleftrightarrow \mathbf{x}=\mathbf{z}-\mathbf{y}$ for all $\mathbf{x}, \mathbf{y}, \mathbf{z} \in V$.
- $\mathbf{x}+\mathbf{y}=\mathbf{x}^{\prime}+\mathbf{y} \Longleftrightarrow \mathbf{x}=\mathbf{x}^{\prime}$ for all $\mathbf{x}, \mathbf{x}^{\prime}, \mathbf{y} \in V$.
- $0 \mathbf{x}=\mathbf{0}$ for any $\mathbf{x} \in V$.
- $(-1) \mathbf{x}=-\mathbf{x}$ for any $\mathbf{x} \in V$.

Additional properties of vector spaces

- (cancellation law) $\mathbf{x}+\mathbf{y}=\mathbf{x}^{\prime}+\mathbf{y}$ implies $\mathbf{x}=\mathbf{x}^{\prime}$ for any $\mathbf{x}, \mathbf{x}^{\prime}, \mathbf{y} \in V$.
If $\mathbf{x}+\mathbf{y}=\mathbf{x}^{\prime}+\mathbf{y}$ then $(\mathbf{x}+\mathbf{y})+(-\mathbf{y})=\left(\mathbf{x}^{\prime}+\mathbf{y}\right)+(-\mathbf{y})$. By associativity, $(\mathbf{x}+\mathbf{y})+(-\mathbf{y})=\mathbf{x}+(\mathbf{y}+(-\mathbf{y}))=\mathbf{x}+\mathbf{0}=\mathbf{x}$ and $\left(\mathbf{x}^{\prime}+\mathbf{y}\right)+(-\mathbf{y})=\mathbf{x}^{\prime}+(\mathbf{y}+(-\mathbf{y}))=\mathbf{x}^{\prime}+\mathbf{0}=\mathbf{x}^{\prime}$. Hence $\mathbf{x}=\mathbf{x}^{\prime}$.
- $0 \mathbf{x}=\mathbf{0}$ for any $\mathbf{x} \in V$.

Indeed, $0 \mathbf{x}+\mathbf{x}=0 \mathbf{x}+1 \mathbf{x}=(0+1) \mathbf{x}=1 \mathbf{x}=\mathbf{x}=\mathbf{0}+\mathbf{x}$.
By the cancellation law, $0 \mathbf{x}=\mathbf{0}$.

- $(-1) \mathbf{x}=-\mathbf{x}$ for any $\mathbf{x} \in V$.

Indeed, $\mathbf{x}+(-1) \mathbf{x}=(-1) \mathbf{x}+\mathbf{x}=(-1) \mathbf{x}+1 \mathbf{x}=(-1+1) \mathbf{x}$ $=0 \mathrm{x}=\mathbf{0}$.

Examples of vector spaces

- \mathbb{R}^{n} : n-dimensional coordinate vectors
- $\mathcal{M}_{m, n}(\mathbb{R}): m \times n$ matrices with real entries
- \mathbb{R}^{∞} : infinite sequences $\left(x_{1}, x_{2}, \ldots\right), x_{i} \in \mathbb{R}$
- $\{\mathbf{0}\}$: the trivial vector space
- $F(\mathbb{R})$: the set of all functions $f: \mathbb{R} \rightarrow \mathbb{R}$
- $C(\mathbb{R})$: all continuous functions $f: \mathbb{R} \rightarrow \mathbb{R}$
- $C^{1}(\mathbb{R})$: all continuously differentiable functions
$f: \mathbb{R} \rightarrow \mathbb{R}$
- $C^{\infty}(\mathbb{R})$: all smooth functions $f: \mathbb{R} \rightarrow \mathbb{R}$
- \mathcal{P} : all polynomials $p(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n}$

Counterexample: dumb scaling

Consider the set $V=\mathbb{R}^{n}$ with the standard addition and a nonstandard scalar multiplication:

$$
r \odot \mathbf{x}=\mathbf{0} \text { for any } \mathbf{x} \in \mathbb{R}^{n} \text { and } r \in \mathbb{R}
$$

Properties A1-A4 hold because they do not involve scalar multiplication.
A5. $r \odot(\mathbf{x}+\mathbf{y})=r \odot \mathbf{x}+r \odot \mathbf{y}$
A6. $(r+s) \odot \mathbf{x}=r \odot \mathbf{x}+s \odot \mathbf{x}$ A7. $(r s) \odot \mathbf{x}=r \odot(s \odot \mathbf{x})$ A8. $1 \odot \mathbf{x}=\mathbf{x}$

$$
\Longleftrightarrow \mathbf{0}=\mathbf{0}+\mathbf{0}
$$

$\Longleftrightarrow \mathbf{0}=\mathbf{0}+\mathbf{0}$
$\Longleftrightarrow 0=0$
$\Longleftrightarrow \mathbf{0}=\mathbf{x}$

A8 is the only property that fails. As a consequence, property A 8 does not follow from properties $\mathrm{A} 1-\mathrm{A} 7$.

Counterexample: lazy scaling

Consider the set $V=\mathbb{R}^{n}$ with the standard addition and a nonstandard scalar multiplication:

$$
r \odot \mathbf{x}=\mathbf{x} \text { for any } \mathbf{x} \in \mathbb{R}^{n} \text { and } r \in \mathbb{R}
$$

Properties A1-A4 hold because they do not involve scalar multiplication.
A5. $r \odot(\mathbf{x}+\mathbf{y})=r \odot \mathbf{x}+r \odot \mathbf{y} \Longleftrightarrow \mathbf{x}+\mathbf{y}=\mathbf{x}+\mathbf{y}$ A6. $(r+s) \odot \mathbf{x}=r \odot \mathbf{x}+s \odot \mathbf{x} \Longleftrightarrow \mathbf{x}=\mathbf{x}+\mathbf{x}$ A7. $(r s) \odot \mathbf{x}=r \odot(s \odot \mathbf{x}) \quad \Longleftrightarrow \mathbf{x}=\mathbf{x}$ A8. $1 \odot \mathbf{x}=\mathbf{x}$
$\Longleftrightarrow x=x$
The only property that fails is A6.

Weird example

Consider the set $V=\mathbb{R}_{+}$of positive numbers with a nonstandard addition and scalar multiplication:

$$
\begin{array}{ll}
\hline x \oplus y=x y & \text { for any } x, y \in \mathbb{R}_{+}, \\
\hline r \odot x=x^{r} & \text { for any } x \in \mathbb{R}_{+} \text {and } r \in \mathbb{R} .
\end{array}
$$

A1. $x \oplus y=y \oplus x \quad \Longleftrightarrow x y=y x$
A2. $(x \oplus y) \oplus z=x \oplus(y \oplus z) \quad \Longleftrightarrow(x y) z=x(y z)$
A3. $x \oplus \zeta=\zeta \oplus x=x \Longleftrightarrow x \zeta=\zeta x=x$ (holds for $\zeta=1$)
A4. $x \oplus \eta=\eta \oplus x=1 \Longleftrightarrow x \eta=\eta x=1$ (holds for $\eta=x^{-1}$)
A5. $r \odot(x \oplus y)=(r \odot x) \oplus(r \odot y) \quad \Longleftrightarrow(x y)^{r}=x^{r} y^{r}$
A6. $(r+s) \odot x=(r \odot x) \oplus(s \odot x) \Longleftrightarrow x^{r+s}=x^{r} x^{s}$
A7. $(r s) \odot x=r \odot(s \odot x) \Longleftrightarrow x^{r s}=\left(x^{s}\right)^{r}$
A8. $1 \odot x=x \quad \Longleftrightarrow x^{1}=x$

Subspaces of vector spaces

Definition. A vector space V_{0} is a subspace of a vector space V if $V_{0} \subset V$ and the linear operations on V_{0} agree with the linear operations on V.

Examples.

- $F(\mathbb{R})$: all functions $f: \mathbb{R} \rightarrow \mathbb{R}$
- $C(\mathbb{R})$: all continuous functions $f: \mathbb{R} \rightarrow \mathbb{R}$
$C(\mathbb{R})$ is a subspace of $F(\mathbb{R})$.
- \mathcal{P} : polynomials $p(x)=a_{0}+a_{1} x+\cdots+a_{k} x^{k}$
- \mathcal{P}_{n} : polynomials of degree less than n
\mathcal{P}_{n} is a subspace of \mathcal{P}.

Subspaces of vector spaces

Counterexamples.

- \mathcal{P} : polynomials $p(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n}$
- P_{n}^{*} : polynomials of degree $n(n>0)$ P_{n}^{*} is not a subspace of \mathcal{P}.
$-x^{n}+\left(x^{n}+1\right)=1 \notin P_{n}^{*} \Longrightarrow P_{n}^{*}$ is not a vector space (addition is not well defined).
- \mathbb{R} with the standard linear operations
- \mathbb{R}_{+}with the operations \oplus and \odot
\mathbb{R}_{+}is not a subspace of \mathbb{R} since the linear operations do not agree.

If S is a subset of a vector space V then S inherits from V addition and scalar multiplication. However S need not be closed under these operations.

Proposition A subset S of a vector space V is a subspace of V if and only if S is nonempty and closed under linear operations, i.e.,

$$
\begin{gathered}
\mathbf{x}, \mathbf{y} \in S \Longrightarrow \mathbf{x}+\mathbf{y} \in S \\
\mathbf{x} \in S \Longrightarrow r \mathbf{x} \in S \text { for all } r \in \mathbb{R}
\end{gathered}
$$

Proof: "only if" is obvious.
"if": properties like associative, commutative, or distributive law hold for S because they hold for V. We only need to verify properties A3 and A4. Take any $\mathbf{x} \in S$ (note that S is nonempty). Then $\mathbf{0}=0 \mathbf{x} \in S$. Also, $-\mathbf{x}=(-1) \mathbf{x} \in S$. Thus $\mathbf{0}$ and $-\mathbf{x}$ in S are the same as in V.

Example. $\quad V=\mathbb{R}^{2}$.

- The line $x-y=0$ is a subspace of \mathbb{R}^{2}.

The line consists of all vectors of the form $(t, t), t \in \mathbb{R}$.

$$
\begin{aligned}
& (t, t)+(s, s)=(t+s, t+s) \Longrightarrow \text { closed under addition } \\
& r(t, t)=(r t, r t) \Longrightarrow \text { closed under scaling }
\end{aligned}
$$

- The parabola $y=x^{2}$ is not a subspace of \mathbb{R}^{2}.

It is enough to find one explicit counterexample.
Counterexample 1: $(1,1)+(-1,1)=(0,2)$.
$(1,1)$ and $(-1,1)$ lie on the parabola while $(0,2)$ does not
\Longrightarrow not closed under addition
Counterexample 2: $2(1,1)=(2,2)$.
$(1,1)$ lies on the parabola while $(2,2)$ does not
\Longrightarrow not closed under scaling

Example. $\quad V=\mathbb{R}^{3}$.

- The plane $z=0$ is a subspace of \mathbb{R}^{3}.
- The plane $z=1$ is not a subspace of \mathbb{R}^{3}.
- The line $t(1,1,0), t \in \mathbb{R}$ is a subspace of \mathbb{R}^{3} and a subspace of the plane $z=0$.
- The line $(1,1,1)+t(1,-1,0), t \in \mathbb{R}$ is not a subspace of \mathbb{R}^{3} as it lies in the plane $x+y+z=3$, which does not contain $\mathbf{0}$.
- In general, a straight line or a plane in \mathbb{R}^{3} is a subspace if and only if it passes through the origin.

