MATH 304
 Linear Algebra

Lecture 14:

Span (continued).
Linear independence.

Span

Let S be a subset of a vector space V.
Definition. The span of the set S is the smallest subspace $W \subset V$ that contains S. If S is not empty then $W=\operatorname{Span}(S)$ consists of all linear combinations $r_{1} \mathbf{v}_{1}+r_{2} \mathbf{v}_{2}+\cdots+r_{k} \mathbf{v}_{k}$ such that $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k} \in S$ and $r_{1}, \ldots, r_{k} \in \mathbb{R}$.

We say that the set S spans the subspace W or that S is a spanning set for W.

Problem Let $\mathbf{v}_{1}=(1,2,0), \mathbf{v}_{2}=(3,1,1)$, and $\mathbf{w}=(4,-7,3)$. Determine whether \mathbf{w} belongs to $\operatorname{Span}\left(\mathbf{v}_{1}, \mathbf{v}_{2}\right)$.

We have to check if there exist $r_{1}, r_{2} \in \mathbb{R}$ such that $\mathbf{w}=r_{1} \mathbf{v}_{1}+r_{2} \mathbf{v}_{2}$. This vector equation is equivalent to a system of linear equations:

$$
\left(\begin{array}{r}
4 \\
-7 \\
3
\end{array}\right)=r_{1}\left(\begin{array}{l}
1 \\
2 \\
0
\end{array}\right)+r_{2}\left(\begin{array}{l}
3 \\
1 \\
1
\end{array}\right) \Longleftrightarrow\left\{\begin{array}{r}
4=r_{1}+3 r_{2} \\
-7=2 r_{1}+r_{2} \\
3=0 r_{1}+r_{2}
\end{array}\right.
$$

The system has a unique solution: $r_{1}=-5, r_{2}=3$. Thus $\mathbf{w}=-5 \mathbf{v}_{1}+3 \mathbf{v}_{2}$ is in $\operatorname{Span}\left(\mathbf{v}_{1}, \mathbf{v}_{2}\right)$.

Problem Let $\mathbf{v}_{1}=(2,5)$ and $\mathbf{v}_{2}=(1,3)$. Show that $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ is a spanning set for \mathbb{R}^{2}.

Take any vector $\mathbf{w}=(a, b) \in \mathbb{R}^{2}$. We have to check that there exist $r_{1}, r_{2} \in \mathbb{R}$ such that

$$
\mathbf{w}=r_{1} \mathbf{v}_{1}+r_{2} \mathbf{v}_{2} \Longleftrightarrow\left\{\begin{array}{l}
2 r_{1}+r_{2}=a \\
5 r_{1}+3 r_{2}=b
\end{array}\right.
$$

Coefficient matrix: $C=\left(\begin{array}{ll}2 & 1 \\ 5 & 3\end{array}\right) . \operatorname{det} C=1 \neq 0$.
Since the matrix C is invertible, the system has a unique solution for any a and b.
Thus $\operatorname{Span}\left(\mathbf{v}_{1}, \mathbf{v}_{2}\right)=\mathbb{R}^{2}$.

Problem Let $\mathbf{v}_{1}=(2,5)$ and $\mathbf{v}_{2}=(1,3)$. Show that $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ is a spanning set for \mathbb{R}^{2}.

Alternative solution: First let us show that vectors $\mathbf{e}_{1}=(1,0)$ and $\mathbf{e}_{2}=(0,1)$ belong to $\operatorname{Span}\left(\mathbf{v}_{1}, \mathbf{v}_{2}\right)$.

$$
\begin{aligned}
& \mathbf{e}_{1}=r_{1} \mathbf{v}_{1}+r_{2} \mathbf{v}_{2} \Longleftrightarrow\left\{\begin{array} { l }
{ 2 r _ { 1 } + r _ { 2 } = 1 } \\
{ 5 r _ { 1 } + 3 r _ { 2 } = 0 }
\end{array} \Longleftrightarrow \left\{\begin{array}{l}
r_{1}=3 \\
r_{2}=-5
\end{array}\right.\right. \\
& \mathbf{e}_{2}=r_{1} \mathbf{v}_{1}+r_{2} \mathbf{v}_{2} \Longleftrightarrow\left\{\begin{array} { l }
{ 2 r _ { 1 } + r _ { 2 } = 0 } \\
{ 5 r _ { 1 } + 3 r _ { 2 } = 1 }
\end{array} \Longleftrightarrow \left\{\begin{array}{l}
r_{1}=-1 \\
r_{2}=2
\end{array}\right.\right.
\end{aligned}
$$

Thus $\mathbf{e}_{1}=3 \mathbf{v}_{1}-5 \mathbf{v}_{2}$ and $\mathbf{e}_{2}=-\mathbf{v}_{1}+2 \mathbf{v}_{2}$. Then for any vector $\mathbf{w}=(a, b) \in \mathbb{R}^{2}$ we have

$$
\begin{aligned}
\mathbf{w} & =a \mathbf{e}_{1}+b \mathbf{e}_{2}=a\left(3 \mathbf{v}_{1}-5 \mathbf{v}_{2}\right)+b\left(-\mathbf{v}_{1}+2 \mathbf{v}_{2}\right) \\
& =(3 a-b) \mathbf{v}_{1}+(-5 a+2 b) \mathbf{v}_{2} .
\end{aligned}
$$

Problem Let $\mathbf{v}_{1}=(2,5)$ and $\mathbf{v}_{2}=(1,3)$. Show that $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ is a spanning set for \mathbb{R}^{2}.

Remarks on the alternative solution:
Notice that \mathbb{R}^{2} is spanned by vectors $\mathbf{e}_{1}=(1,0)$ and $\mathbf{e}_{2}=(0,1)$ since $(a, b)=a \mathbf{e}_{1}+b \mathbf{e}_{2}$.
This is why we have checked that vectors \mathbf{e}_{1} and \mathbf{e}_{2} belong to $\operatorname{Span}\left(\mathbf{v}_{1}, \mathbf{v}_{2}\right)$. Then

$$
\begin{gathered}
\mathbf{e}_{1}, \mathbf{e}_{2} \in \operatorname{Span}\left(\mathbf{v}_{1}, \mathbf{v}_{2}\right) \Longrightarrow \operatorname{Span}\left(\mathbf{e}_{1}, \mathbf{e}_{2}\right) \subset \operatorname{Span}\left(\mathbf{v}_{1}, \mathbf{v}_{2}\right) \\
\quad \Longrightarrow \mathbb{R}^{2} \subset \operatorname{Span}\left(\mathbf{v}_{1}, \mathbf{v}_{2}\right) \Longrightarrow \operatorname{Span}\left(\mathbf{v}_{1}, \mathbf{v}_{2}\right)=\mathbb{R}^{2} .
\end{gathered}
$$

In general, to show that $\operatorname{Span}\left(S_{1}\right)=\operatorname{Span}\left(S_{2}\right)$, it is enough to check that $S_{1} \subset \operatorname{Span}\left(S_{2}\right)$ and $S_{2} \subset \operatorname{Span}\left(S_{1}\right)$.

More properties of span

Let S_{0} and S be subsets of a vector space V.

- $S_{0} \subset S \Longrightarrow \operatorname{Span}\left(S_{0}\right) \subset \operatorname{Span}(S)$.
- $\operatorname{Span}\left(S_{0}\right)=V$ and $S_{0} \subset S \Longrightarrow \operatorname{Span}(S)=V$.
- If $\mathbf{v}_{0}, \mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ is a spanning set for V and \mathbf{v}_{0} is a linear combination of vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ then $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ is also a spanning set for V. Indeed, if $\mathbf{v}_{0}=r_{1} \mathbf{v}_{1}+\cdots+r_{k} \mathbf{v}_{k}$, then $t_{0} \mathbf{v}_{0}+t_{1} \mathbf{v}_{1}+\cdots+t_{k} \mathbf{v}_{k}=\left(t_{0} r_{1}+t_{1}\right) \mathbf{v}_{1}+\cdots+\left(t_{0} r_{k}+t_{k}\right) \mathbf{v}_{k}$.
- $\operatorname{Span}\left(S_{0} \cup\left\{\mathbf{v}_{0}\right\}\right)=\operatorname{Span}\left(S_{0}\right)$ if and only if $\mathbf{v}_{0} \in \operatorname{Span}\left(S_{0}\right)$.
If $\mathbf{v}_{0} \in \operatorname{Span}\left(S_{0}\right)$, then $S_{0} \cup\left\{\mathbf{v}_{0}\right\} \subset \operatorname{Span}\left(S_{0}\right)$, which implies $\operatorname{Span}\left(S_{0} \cup\left\{\mathbf{v}_{0}\right\}\right) \subset \operatorname{Span}\left(S_{0}\right)$. On the other hand, $\operatorname{Span}\left(S_{0}\right) \subset \operatorname{Span}\left(S_{0} \cup\left\{\mathbf{v}_{0}\right\}\right)$.

Linear independence

Definition. Let V be a vector space. Vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k} \in V$ are called linearly dependent if they satisfy a relation

$$
r_{1} \mathbf{v}_{1}+r_{2} \mathbf{v}_{2}+\cdots+r_{k} \mathbf{v}_{k}=\mathbf{0}
$$

where the coefficients $r_{1}, \ldots, r_{k} \in \mathbb{R}$ are not all equal to zero. Otherwise vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}$ are called linearly independent. That is, if

$$
r_{1} \mathbf{v}_{1}+r_{2} \mathbf{v}_{2}+\cdots+r_{k} \mathbf{v}_{k}=\mathbf{0} \Longrightarrow r_{1}=\cdots=r_{k}=0 .
$$

A set $S \subset V$ is linearly dependent if one can find some distinct linearly dependent vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ in S. Otherwise S is linearly independent.

Examples of linear independence

- Vectors $\mathbf{e}_{1}=(1,0,0), \mathbf{e}_{2}=(0,1,0)$, and $\mathbf{e}_{3}=(0,0,1)$ in \mathbb{R}^{3}.
$x \mathbf{e}_{1}+y \mathbf{e}_{2}+z \mathbf{e}_{3}=\mathbf{0} \Longrightarrow(x, y, z)=\mathbf{0}$
$\Longrightarrow x=y=z=0$
- Matrices $E_{11}=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right), E_{12}=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$,

$$
E_{21}=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right), \text { and } E_{22}=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)
$$

$a E_{11}+b E_{12}+c E_{21}+d E_{22}=O \Longrightarrow\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)=0$ $\Longrightarrow a=b=c=d=0$

Examples of linear independence

- Polynomials $1, x, x^{2}, \ldots, x^{n}$.
$a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}=0$ identically
$\Longrightarrow \quad a_{i}=0$ for $0 \leq i \leq n$
- The infinite set $\left\{1, x, x^{2}, \ldots, x^{n}, \ldots\right\}$.
- Polynomials $p_{1}(x)=1, p_{2}(x)=x-1$, and $p_{3}(x)=(x-1)^{2}$.
$a_{1} p_{1}(x)+a_{2} p_{2}(x)+a_{3} p_{3}(x)=a_{1}+a_{2}(x-1)+a_{3}(x-1)^{2}=$ $=\left(a_{1}-a_{2}+a_{3}\right)+\left(a_{2}-2 a_{3}\right) x+a_{3} x^{2}$.
Hence $a_{1} p_{1}(x)+a_{2} p_{2}(x)+a_{3} p_{3}(x)=0$ identically
$\Longrightarrow a_{1}-a_{2}+a_{3}=a_{2}-2 a_{3}=a_{3}=0$
$\Longrightarrow \quad a_{1}=a_{2}=a_{3}=0$

