MATH 304 Linear Algebra

Lecture 15: Linear independence (continued). Wronskian.

Linear independence

Definition. Let V be a vector space. Vectors $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_k \in V$ are called **linearly dependent** if they satisfy a relation

$$r_1\mathbf{v}_1+r_2\mathbf{v}_2+\cdots+r_k\mathbf{v}_k=\mathbf{0},$$

where the coefficients $r_1, \ldots, r_k \in \mathbb{R}$ are not all equal to zero. Otherwise vectors $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_k$ are called **linearly independent**. That is, if

$$r_1\mathbf{v}_1+r_2\mathbf{v}_2+\cdots+r_k\mathbf{v}_k=\mathbf{0} \implies r_1=\cdots=r_k=\mathbf{0}.$$

A set $S \subset V$ is **linearly dependent** if one can find some distinct linearly dependent vectors $\mathbf{v}_1, \ldots, \mathbf{v}_k$ in *S*. Otherwise *S* is **linearly independent**. **Problem** Let $\mathbf{v}_1 = (1, 2, 0)$, $\mathbf{v}_2 = (3, 1, 1)$, and $\mathbf{v}_3 = (4, -7, 3)$. Determine whether vectors $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ are linearly independent.

We have to check if there exist $r_1, r_2, r_3 \in \mathbb{R}$ not all zero such that $r_1\mathbf{v}_1 + r_2\mathbf{v}_2 + r_3\mathbf{v}_3 = \mathbf{0}$.

This vector equation is equivalent to a system

$$\begin{cases} r_1 + 3r_2 + 4r_3 = 0 \\ 2r_1 + r_2 - 7r_3 = 0 \\ 0r_1 + r_2 + 3r_3 = 0 \end{cases} \begin{pmatrix} 1 & 3 & 4 & | & 0 \\ 2 & 1 & -7 & | & 0 \\ 0 & 1 & 3 & | & 0 \end{pmatrix}$$

The vectors $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ are linearly dependent if and only if the coefficient matrix $A = (\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3)$ is singular. We obtain that det A = 0. **Theorem** The following conditions are equivalent: (i) vectors $\mathbf{v}_1, \ldots, \mathbf{v}_k$ are linearly dependent; (ii) one of vectors $\mathbf{v}_1, \ldots, \mathbf{v}_k$ is a linear combination of the other k - 1 vectors.

Proof: (i)
$$\Longrightarrow$$
 (ii) Suppose that
 $r_1\mathbf{v}_1 + r_2\mathbf{v}_2 + \cdots + r_k\mathbf{v}_k = \mathbf{0}$,
where $r_i \neq 0$ for some $1 \leq i \leq k$. Then
 $\mathbf{v}_i = -\frac{r_1}{r_i}\mathbf{v}_1 - \cdots - \frac{r_{i-1}}{r_i}\mathbf{v}_{i-1} - \frac{r_{i+1}}{r_i}\mathbf{v}_{i+1} - \cdots - \frac{r_k}{r_i}\mathbf{v}_k$.
(ii) \Longrightarrow (i) Suppose that
 $\mathbf{v}_i = s_1\mathbf{v}_1 + \cdots + s_{i-1}\mathbf{v}_{i-1} + s_{i+1}\mathbf{v}_{i+1} + \cdots + s_k\mathbf{v}_k$
for some scalars s_j . Then
 $s_1\mathbf{v}_1 + \cdots + s_{i-1}\mathbf{v}_{i-1} - \mathbf{v}_i + s_{i+1}\mathbf{v}_{i+1} + \cdots + s_k\mathbf{v}_k = \mathbf{0}$

More facts on linear independence

Let S_0 and S be subsets of a vector space V.

- If $S_0 \subset S$ and S is linearly independent, then so is S_0 .
- If $S_0 \subset S$ and S_0 is linearly dependent, then so is S.
- If S is linearly independent in V and V is a subspace of W, then S is linearly independent in W.
- The empty set is linearly independent.
- Any set containing **0** is linearly dependent.

• Two vectors \mathbf{v}_1 and \mathbf{v}_2 are linearly dependent if and only if one of them is a scalar multiple the other.

• Two nonzero vectors \mathbf{v}_1 and \mathbf{v}_2 are linearly dependent if and only if either of them is a scalar multiple the other.

• If S_0 is linearly independent and $\mathbf{v}_0 \in V \setminus S_0$ then $S_0 \cup \{\mathbf{v}_0\}$ is linearly independent if and only if $\mathbf{v}_0 \notin \operatorname{Span}(S_0)$.

Theorem Vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m \in \mathbb{R}^n$ are linearly dependent whenever m > n (i.e., the number of coordinates is less than the number of vectors).

Proof: Let $\mathbf{v}_j = (a_{1j}, a_{2j}, \dots, a_{nj})$ for $j = 1, 2, \dots, m$. Then the vector equality $t_1\mathbf{v}_1 + t_2\mathbf{v}_2 + \dots + t_m\mathbf{v}_m = \mathbf{0}$ is equivalent to the system

$$\begin{cases} a_{11}t_1 + a_{12}t_2 + \dots + a_{1m}t_m = 0, \\ a_{21}t_1 + a_{22}t_2 + \dots + a_{2m}t_m = 0, \\ \dots \dots \dots \dots \\ a_{n1}t_1 + a_{n2}t_2 + \dots + a_{nm}t_m = 0. \end{cases}$$

Note that vectors $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_m$ are columns of the coefficient matrix (a_{ij}) . The number of leading entries in the row echelon form is at most *n*. If m > n then there are free variables, therefore the zero solution is not unique.

General results on linear independence in \mathbb{R}^n

Theorem 1 Given an $n \times m$ matrix A, the following conditions are equivalent:

(i) columns of A are linearly independent (as vectors in \mathbb{R}^n); (ii) $\mathbf{x} = \mathbf{0}$ is the only solution of the matrix equation $A\mathbf{x} = \mathbf{0}$; (iii) the row echelon form of A has a leading entry in each column.

Theorem 2 Given a square matrix A of dimensions $n \times n$, the following conditions are equivalent:

(i) det $A \neq 0$;

(ii) columns of A are linearly independent (as vectors in \mathbb{R}^n); (iii) rows of A are linearly independent (as vectors in \mathbb{R}^n). *Example.* Consider vectors $\mathbf{v}_1 = (1, -1, 1)$, $\mathbf{v}_2 = (1, 0, 0)$, $\mathbf{v}_3 = (1, 1, 1)$, and $\mathbf{v}_4 = (1, 2, 4)$ in \mathbb{R}^3 .

Two vectors are linearly dependent if and only if they are parallel. Hence \mathbf{v}_1 and \mathbf{v}_2 are linearly independent.

Vectors $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ are linearly independent if and only if the matrix $A = (\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3)$ is invertible. $\det A = \begin{vmatrix} 1 & 1 & 1 \\ -1 & 0 & 1 \\ 1 & 0 & 1 \end{vmatrix} = - \begin{vmatrix} -1 & 1 \\ 1 & 1 \end{vmatrix} = 2 \neq 0.$

Therefore $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ are linearly independent. Four vectors in \mathbb{R}^3 are always linearly dependent. Thus $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4$ are linearly dependent. **Problem.** Let $A = \begin{pmatrix} -1 & 1 \\ -1 & 0 \end{pmatrix}$. Determine whether

matrices A, A^2 , and A^3 are linearly independent.

We have
$$A = \begin{pmatrix} -1 & 1 \\ -1 & 0 \end{pmatrix}$$
, $A^2 = \begin{pmatrix} 0 & -1 \\ 1 & -1 \end{pmatrix}$, $A^3 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.
The task is to check if there exist $r_1, r_2, r_3 \in \mathbb{R}$ not all zero

such that $r_1A + r_2A^2 + r_3A^3 = 0$.

This matrix equation is equivalent to a system

$$\begin{cases} -r_1 + 0r_2 + r_3 = 0 & \\ r_1 - r_2 + 0r_3 = 0 & \\ -r_1 + r_2 + 0r_3 = 0 & \\ 0r_1 - r_2 + r_3 = 0 & \\ \end{cases} \begin{pmatrix} -1 & 0 & 1 & | & 0 \\ 1 & -1 & 0 & | & 0 \\ -1 & 1 & 0 & | & 0 \\ 0 & -1 & 1 & | & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & -1 & | & 0 \\ 0 & 1 & -1 & | & 0 \\ 0 & 0 & 0 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{pmatrix}$$

The row echelon form of the augmented matrix shows there is a free variable. Hence the system has a nonzero solution so that the matrices are linearly dependent (one relation is $A + A^2 + A^3 = O$). **Problem.** Show that functions e^x , e^{2x} , and e^{3x} are linearly independent in $C^{\infty}(\mathbb{R})$.

Suppose that $ae^{x} + be^{2x} + ce^{3x} = 0$ for all $x \in \mathbb{R}$, where a, b, c are constants. We have to show that a = b = c = 0. Differentiate this identity twice:

$$ae^{x} + be^{2x} + ce^{3x} = 0,$$

 $ae^{x} + 2be^{2x} + 3ce^{3x} = 0,$
 $ae^{x} + 4be^{2x} + 9ce^{3x} = 0.$

It follows that $A(x)\mathbf{v} = \mathbf{0}$, where

$$A(x) = \begin{pmatrix} e^x & e^{2x} & e^{3x} \\ e^x & 2e^{2x} & 3e^{3x} \\ e^x & 4e^{2x} & 9e^{3x} \end{pmatrix}$$
, $\mathbf{v} = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$.

$$\begin{aligned} A(x) &= \begin{pmatrix} e^{x} & e^{2x} & e^{3x} \\ e^{x} & 2e^{2x} & 3e^{3x} \\ e^{x} & 4e^{2x} & 9e^{3x} \end{pmatrix}, \quad \mathbf{v} = \begin{pmatrix} a \\ b \\ c \end{pmatrix}. \\ \det A(x) &= e^{x} \begin{vmatrix} 1 & e^{2x} & e^{3x} \\ 1 & 2e^{2x} & 3e^{3x} \\ 1 & 4e^{2x} & 9e^{3x} \end{vmatrix} = e^{x}e^{2x} \begin{vmatrix} 1 & 1 & e^{3x} \\ 1 & 2 & 3e^{3x} \\ 1 & 4 & 9e^{3x} \end{vmatrix} \\ &= e^{x}e^{2x}e^{3x} \begin{vmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 4 & 9 \end{vmatrix} = e^{6x} \begin{vmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 4 & 9 \end{vmatrix} = e^{6x} \begin{vmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 4 & 9 \end{vmatrix} = e^{6x} \begin{vmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 4 & 9 \end{vmatrix} = e^{6x} \begin{vmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 4 & 9 \end{vmatrix} = e^{6x} \begin{vmatrix} 1 & 2 \\ 1 & 4 & 9 \end{vmatrix} = e^{6x} \begin{vmatrix} 1 & 2 \\ 3 & 8 \end{vmatrix} = 2e^{6x} \neq 0. \end{aligned}$$

Since the matrix A(x) is invertible, we obtain $A(x)\mathbf{v} = \mathbf{0} \implies \mathbf{v} = \mathbf{0} \implies a = b = c = 0$

Wronskian

Let f_1, f_2, \ldots, f_n be smooth functions on an interval [a, b]. The **Wronskian** $W[f_1, f_2, \ldots, f_n]$ is a function on [a, b] defined by

$$W[f_1, f_2, \dots, f_n](x) = \begin{vmatrix} f_1(x) & f_2(x) & \cdots & f_n(x) \\ f'_1(x) & f'_2(x) & \cdots & f'_n(x) \\ \vdots & \vdots & \ddots & \vdots \\ f_1^{(n-1)}(x) & f_2^{(n-1)}(x) & \cdots & f_n^{(n-1)}(x) \end{vmatrix}.$$

Theorem If $W[f_1, f_2, ..., f_n](x_0) \neq 0$ for some $x_0 \in [a, b]$ then the functions $f_1, f_2, ..., f_n$ are linearly independent in C[a, b].