MATH 304
 Linear Algebra

Lecture 16:
Basis and dimension.

Spanning set

Let S be a subset of a vector space V.
Definition. The span of the set S is the smallest subspace $W \subset V$ that contains S. If S is not empty then $W=\operatorname{Span}(S)$ consists of all linear combinations $r_{1} \mathbf{v}_{1}+r_{2} \mathbf{v}_{2}+\cdots+r_{k} \mathbf{v}_{k}$ such that $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k} \in S$ and $r_{1}, \ldots, r_{k} \in \mathbb{R}$.
We say that the set S spans the subspace W or that S is a spanning set for W.

Remarks. - If S_{1} is a spanning set for a vector space V and $S_{1} \subset S_{2} \subset V$, then S_{2} is also a spanning set for V.

- If $\mathbf{v}_{0}, \mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ is a spanning set for V and \mathbf{v}_{0} is a linear combination of vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ then $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ is also a spanning set for V.

Linear independence

Definition. Let V be a vector space. Vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k} \in V$ are called linearly dependent if they satisfy a relation

$$
r_{1} \mathbf{v}_{1}+r_{2} \mathbf{v}_{2}+\cdots+r_{k} \mathbf{v}_{k}=\mathbf{0}
$$

where the coefficients $r_{1}, \ldots, r_{k} \in \mathbb{R}$ are not all equal to zero. Otherwise the vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}$ are called linearly independent. That is, if

$$
r_{1} \mathbf{v}_{1}+r_{2} \mathbf{v}_{2}+\cdots+r_{k} \mathbf{v}_{k}=\mathbf{0} \Longrightarrow r_{1}=\cdots=r_{k}=0 .
$$

A set $S \subset V$ is linearly dependent if one can find some distinct linearly dependent vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ in S. Otherwise S is linearly independent.

Theorem Vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k} \in V$ are linearly dependent if and only if one of them is a linear combination of the other $k-1$ vectors.

Basis

Definition. Let V be a vector space. Any linearly independent spanning set for V is called a basis.

Suppose that a set $S \subset V$ is a basis for V. "Spanning set" means that any vector $\mathbf{v} \in V$ can be represented as a linear combination

$$
\mathbf{v}=r_{1} \mathbf{v}_{1}+r_{2} \mathbf{v}_{2}+\cdots+r_{k} \mathbf{v}_{k}
$$

where $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ are distinct vectors from S and $r_{1}, \ldots, r_{k} \in \mathbb{R}$. "Linearly independent" implies that the above representation is unique:

$$
\begin{aligned}
& \mathbf{v}=r_{1} \mathbf{v}_{1}+r_{2} \mathbf{v}_{2}+\cdots+r_{k} \mathbf{v}_{k}=r_{1}^{\prime} \mathbf{v}_{1}+r_{2}^{\prime} \mathbf{v}_{2}+\cdots+r_{k}^{\prime} \mathbf{v}_{k} \\
& \Longrightarrow\left(r_{1}-r_{1}^{\prime}\right) \mathbf{v}_{1}+\left(r_{2}-r_{2}^{\prime}\right) \mathbf{v}_{2}+\cdots+\left(r_{k}-r_{k}^{\prime}\right) \mathbf{v}_{k}=\mathbf{0} \\
& \Longrightarrow r_{1}-r_{1}^{\prime}=r_{2}-r_{2}^{\prime}=\ldots=r_{k}-r_{k}^{\prime}=0
\end{aligned}
$$

Examples. - Standard basis for \mathbb{R}^{n} :
$\mathbf{e}_{1}=(1,0,0, \ldots, 0,0), \mathbf{e}_{2}=(0,1,0, \ldots, 0,0), \ldots$,
$\mathbf{e}_{n}=(0,0,0, \ldots, 0,1)$.
Indeed, $\left(x_{1}, x_{2}, \ldots, x_{n}\right)=x_{1} \mathbf{e}_{1}+x_{2} \mathbf{e}_{2}+\cdots+x_{n} \mathbf{e}_{n}$.

- Matrices $\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)$
form a basis for $\mathcal{M}_{2,2}(\mathbb{R})$.
$\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)=a\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)+b\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)+c\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)+d\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)$.
- Polynomials $1, x, x^{2}, \ldots, x^{n-1}$ form a basis for $\mathcal{P}_{n}=\left\{a_{0}+a_{1} x+\cdots+a_{n-1} x^{n-1}: a_{i} \in \mathbb{R}\right\}$.
- The infinite set $\left\{1, x, x^{2}, \ldots, x^{n}, \ldots\right\}$ is a basis for \mathcal{P}, the space of all polynomials.

Let $\mathbf{v}, \mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k} \in \mathbb{R}^{n}$ and $r_{1}, r_{2}, \ldots, r_{k} \in \mathbb{R}$. The vector equation $r_{1} \mathbf{v}_{1}+r_{2} \mathbf{v}_{2}+\cdots+r_{k} \mathbf{v}_{k}=\mathbf{v}$ is equivalent to the matrix equation $A \mathbf{x}=\mathbf{v}$, where

$$
A=\left(\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}\right), \quad \mathbf{x}=\left(\begin{array}{c}
r_{1} \\
\vdots \\
r_{k}
\end{array}\right) .
$$

$$
r_{1}\left(\begin{array}{c}
a_{11} \\
a_{21} \\
\vdots \\
a_{n 1}
\end{array}\right)+r_{2}\left(\begin{array}{c}
a_{12} \\
a_{22} \\
\vdots \\
a_{n 2}
\end{array}\right)+\cdots+r_{k}\left(\begin{array}{c}
a_{1 k} \\
a_{2 k} \\
\vdots \\
a_{n k}
\end{array}\right)=\left(\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{n}
\end{array}\right)
$$

$$
\left(\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 k} \\
a_{21} & a_{22} & \cdots & a_{2 k} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n k}
\end{array}\right)\left(\begin{array}{c}
r_{1} \\
r_{2} \\
\vdots \\
r_{k}
\end{array}\right)=\left(\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{n}
\end{array}\right) \quad \Longleftrightarrow \quad A \mathbf{x}=\mathbf{v}
$$

Let $\mathbf{v}, \mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k} \in \mathbb{R}^{n}$ and $r_{1}, r_{2}, \ldots, r_{k} \in \mathbb{R}$. The vector equation $r_{1} \mathbf{v}_{1}+r_{2} \mathbf{v}_{2}+\cdots+r_{k} \mathbf{v}_{k}=\mathbf{v}$ is equivalent to the matrix equation $A \mathbf{x}=\mathbf{v}$, where

$$
A=\left(\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}\right), \quad \mathbf{x}=\left(\begin{array}{c}
r_{1} \\
\vdots \\
r_{k}
\end{array}\right) .
$$

That is, A is the $n \times k$ matrix such that vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}$ are consecutive columns of A.

- Vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ span \mathbb{R}^{n} if the row echelon form of A has no zero rows.
- Vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ are linearly independent if the row echelon form of A has a leading entry in each column (no free variables).

spanning
no linear independence

no spanning linear independence

no spanning no linear independence

Bases for \mathbb{R}^{n}

Let $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}$ be vectors in \mathbb{R}^{n}.
Theorem 1 If $k<n$ then the vectors
$\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}$ do not span \mathbb{R}^{n}.
Theorem 2 If $k>n$ then the vectors
$\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}$ are linearly dependent.
Theorem 3 If $k=n$ then the following conditions are equivalent:
(i) $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ is a basis for \mathbb{R}^{n};
(ii) $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ is a spanning set for \mathbb{R}^{n};
(iii) $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ is a linearly independent set.

Example. Consider vectors $\mathbf{v}_{1}=(1,-1,1)$,
$\mathbf{v}_{2}=(1,0,0), \mathbf{v}_{3}=(1,1,1)$, and $\mathbf{v}_{4}=(1,2,4)$ in \mathbb{R}^{3}.
Vectors \mathbf{v}_{1} and \mathbf{v}_{2} are linearly independent (as they are not parallel), but they do not span \mathbb{R}^{3}.

Vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ are linearly independent since

$$
\begin{array}{rrr}
1 & 1 & 1 \\
-1 & 0 & 1 \\
1 & 0 & 1
\end{array}\left|=-\left|\begin{array}{rr}
-1 & 1 \\
1 & 1
\end{array}\right|=-(-2)=2 \neq 0\right.
$$

Therefore $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ is a basis for \mathbb{R}^{3}.
Vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}$ span \mathbb{R}^{3} (because $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ already span \mathbb{R}^{3}), but they are linearly dependent.

Dimension

Theorem 1 Any vector space has a basis.
Theorem 2 If a vector space V has a finite basis, then all bases for V are finite and have the same number of elements.

Definition. The dimension of a vector space V, denoted $\operatorname{dim} V$, is the number of elements in any of its bases.

Examples. • $\operatorname{dim} \mathbb{R}^{n}=n$

- $\mathcal{M}_{2,2}(\mathbb{R}):$ the space of 2×2 matrices $\operatorname{dim} \mathcal{M}_{2,2}(\mathbb{R})=4$
- $\mathcal{M}_{m, n}(\mathbb{R})$: the space of $m \times n$ matrices $\operatorname{dim} \mathcal{M}_{m, n}(\mathbb{R})=m n$
- \mathcal{P}_{n} : polynomials of degree less than n $\operatorname{dim} \mathcal{P}_{n}=n$
- \mathcal{P} : the space of all polynomials $\operatorname{dim} \mathcal{P}=\infty$
- $\{\mathbf{0}\}$: the trivial vector space $\operatorname{dim}\{\mathbf{0}\}=0$

Problem. Find the dimension of the plane $x+2 z=0$ in \mathbb{R}^{3}.

The general solution of the equation $x+2 z=0$ is
$\left\{\begin{array}{l}x=-2 s \\ y=t \\ z=s\end{array}\right.$

$$
(t, s \in \mathbb{R})
$$

That is, $(x, y, z)=(-2 s, t, s)=t(0,1,0)+s(-2,0,1)$. Hence the plane is the span of vectors $\mathbf{v}_{1}=(0,1,0)$ and $\mathbf{v}_{2}=(-2,0,1)$. These vectors are linearly independent as they are not parallel.
Thus $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ is a basis so that the dimension of the plane is 2 .

