MATH 304

Linear Algebra

Lecture 17: Basis and dimension (continued).

Basis

Definition. Let V be a vector space. A linearly independent spanning set for V is called a **basis**.

Theorem A nonempty set $S \subset V$ is a basis for V if and only if any vector $\mathbf{v} \in V$ is uniquely represented as a linear combination $\mathbf{v} = r_1\mathbf{v}_1 + r_2\mathbf{v}_2 + \cdots + r_k\mathbf{v}_k$, where $\mathbf{v}_1, \ldots, \mathbf{v}_k$ are distinct vectors from S and $r_1, \ldots, r_k \in \mathbb{R}$.

Remark on uniqueness. Expansions $\mathbf{v}=2\mathbf{v}_1-\mathbf{v}_2$, $\mathbf{v}=-\mathbf{v}_2+2\mathbf{v}_1$, and $\mathbf{v}=2\mathbf{v}_1-\mathbf{v}_2+0\mathbf{v}_3$ are considered the same.

Dimension

Theorem 1 Any vector space has a basis.

Theorem 2 If a vector space V has a finite basis, then all bases for V are finite and have the same number of elements.

Definition. The **dimension** of a vector space V, denoted dim V, is the number of elements in any of its bases.

Examples. • dim $\mathbb{R}^n = n$

- $\mathcal{M}_{m,n}(\mathbb{R})$: the space of $m \times n$ matrices; dim $\mathcal{M}_{m,n} = mn$
- \mathcal{P}_n : polynomials of degree less than n; dim $\mathcal{P}_n = n$
- \mathcal{P} : the space of all polynomials; $\dim \mathcal{P} = \infty$
- $\{\mathbf{0}\}$: the trivial vector space; dim $\{\mathbf{0}\} = 0$

How to find a basis?

Theorem Let S be a subset of a vector space V. Then the following conditions are equivalent:

- (i) S is a linearly independent spanning set for V, i.e., a basis;
- (ii) S is a minimal spanning set for V;
- (iii) S is a maximal linearly independent subset of V.

"Minimal spanning set" means "remove any element from this set, and it is no longer a spanning set".

"Maximal linearly independent subset" means "add any element of V to this set, and it will become linearly dependent".

Theorem Let V be a vector space. Then **(i)** any spanning set for V can be reduced to a minimal spanning set;

(ii) any linearly independent subset of V can be extended to a maximal linearly independent set.

Corollary 1 Any spanning set contains a basis while any linearly independent set is contained in a basis.

Corollary 2 A vector space is finite-dimensional if and only if it is spanned by a finite set.

How to find a basis?

Approach 1. Get a spanning set for the vector space, then reduce this set to a basis dropping one vector at a time.

Proposition Let $\mathbf{v}_0, \mathbf{v}_1, \dots, \mathbf{v}_k$ be a spanning set for a vector space V. If \mathbf{v}_0 is a linear combination of vectors $\mathbf{v}_1, \dots, \mathbf{v}_k$ then $\mathbf{v}_1, \dots, \mathbf{v}_k$ is also a spanning set for V.

Indeed, if
$$\mathbf{v}_0 = r_1 \mathbf{v}_1 + \cdots + r_k \mathbf{v}_k$$
, then
$$t_0 \mathbf{v}_0 + t_1 \mathbf{v}_1 + \cdots + t_k \mathbf{v}_k =$$
$$= (t_0 r_1 + t_1) \mathbf{v}_1 + \cdots + (t_0 r_k + t_k) \mathbf{v}_k.$$

Problem. Find a basis for the vector space V spanned by vectors $\mathbf{w}_1 = (1, 1, 0)$, $\mathbf{w}_2 = (0, 1, 1)$, $\mathbf{w}_3 = (2, 3, 1)$, and $\mathbf{w}_4 = (1, 1, 1)$.

To pare this spanning set, we need to find a relation of the form $r_1\mathbf{w}_1+r_2\mathbf{w}_2+r_3\mathbf{w}_3+r_4\mathbf{w}_4=\mathbf{0}$, where $r_i\in\mathbb{R}$ are not all equal to zero. Equivalently,

$$\begin{pmatrix} 1 & 0 & 2 & 1 \\ 1 & 1 & 3 & 1 \\ 0 & 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} r_1 \\ r_2 \\ r_3 \\ r_4 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.$$

To solve this system of linear equations for r_1 , r_2 , r_3 , r_4 , we apply row reduction.

$$\begin{pmatrix} 1 & 0 & 2 & 1 \\ 1 & 1 & 3 & 1 \\ 0 & 1 & 1 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 2 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 2 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 1 & 0 & 2 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \qquad \text{(reduced row echelon form)}$$

$$\begin{cases} r_1 + 2r_3 = 0 \\ r_2 + r_3 = 0 \\ r_4 = 0 \end{cases} \iff \begin{cases} r_1 = -2r_3 \\ r_2 = -r_3 \\ r_4 = 0 \end{cases}$$

General solution: $(r_1, r_2, r_3, r_4) = (-2t, -t, t, 0), t \in \mathbb{R}$. Particular solution: $(r_1, r_2, r_3, r_4) = (2, 1, -1, 0)$.

Problem. Find a basis for the vector space V spanned by vectors $\mathbf{w}_1 = (1, 1, 0)$, $\mathbf{w}_2 = (0, 1, 1)$, $\mathbf{w}_3 = (2, 3, 1)$, and $\mathbf{w}_4 = (1, 1, 1)$.

We have obtained that $2\mathbf{w}_1 + \mathbf{w}_2 - \mathbf{w}_3 = \mathbf{0}$. Hence any of vectors $\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3$ can be dropped. For instance, $V = \mathrm{Span}(\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_4)$.

Let us check whether vectors $\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_4$ are linearly independent:

$$\begin{vmatrix} 1 & 0 & 1 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{vmatrix} = \begin{vmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{vmatrix} = \begin{vmatrix} 1 & 0 \\ 1 & 1 \end{vmatrix} = 1 \neq 0.$$

They are!!! Hence $\{\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_4\}$ is a basis for V. Besides, it follows that $V = \mathbb{R}^3$.

How to find a basis?

Approach 2. Build a maximal linearly independent set adding one vector at a time.

If the vector space V is trivial, it has the empty basis. If $V \neq \{\mathbf{0}\}$, pick any vector $\mathbf{v}_1 \neq \mathbf{0}$. If \mathbf{v}_1 spans V, it is a basis. Otherwise pick any vector $\mathbf{v}_2 \in V$ that is not in the span of \mathbf{v}_1 . If \mathbf{v}_1 and \mathbf{v}_2 span V, they constitute a basis. Otherwise pick any vector $\mathbf{v}_3 \in V$ that is not in the span of \mathbf{v}_1 and \mathbf{v}_2 . And so on...

Modifications. Instead of the empty set, we can start with any linearly independent set (if we are given one). If we are given a spanning set S, it is enough to pick new vectors only in S.

Remark. This inductive procedure works for finite-dimensional vector spaces. There is an analogous procedure for infinite-dimensional spaces (transfinite induction).

Vectors $\mathbf{v}_1 = (0, 1, 0)$ and $\mathbf{v}_2 = (-2, 0, 1)$ are linearly independent.

Problem. Extend the set $\{\mathbf v_1, \mathbf v_2\}$ to a basis for $\mathbb R^3.$

Our task is to find a vector \mathbf{v}_3 that is not a linear combination of \mathbf{v}_1 and \mathbf{v}_2 .

Then $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ will be a basis for \mathbb{R}^3 .

Hint 1. \mathbf{v}_1 and \mathbf{v}_2 span the plane x + 2z = 0.

The vector $\mathbf{v}_3 = (1,1,1)$ does not lie in the plane x+2z=0, hence it is not a linear combination of \mathbf{v}_1 and \mathbf{v}_2 . Thus $\{\mathbf{v}_1,\mathbf{v}_2,\mathbf{v}_3\}$ is a basis for \mathbb{R}^3 .

Vectors $\mathbf{v}_1 = (0, 1, 0)$ and $\mathbf{v}_2 = (-2, 0, 1)$ are linearly independent.

Problem. Extend the set $\{\boldsymbol{v}_1,\boldsymbol{v}_2\}$ to a basis for $\mathbb{R}^3.$

Our task is to find a vector \mathbf{v}_3 that is not a linear combination of \mathbf{v}_1 and \mathbf{v}_2 . Then $\{\mathbf{v}_1,\mathbf{v}_2,\mathbf{v}_3\}$ will be a basis for \mathbb{R}^3 .

Hint 2. Since vectors $\mathbf{e}_1 = (1,0,0)$, $\mathbf{e}_2 = (0,1,0)$, and $\mathbf{e}_3 = (0,0,1)$ form a spanning set for \mathbb{R}^3 , at least one of them can be chosen as \mathbf{v}_3 .

Let us check that $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{e}_1\}$ and $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{e}_3\}$ are two bases for \mathbb{R}^3 :

$$\begin{vmatrix} 0 & -2 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{vmatrix} = 1 \neq 0, \quad \begin{vmatrix} 0 & -2 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 1 \end{vmatrix} = 2 \neq 0.$$