MATH 304
 Linear Algebra
 Lecture 18:
 Rank and nullity of a matrix.

Row space of a matrix

Definition. The row space of an $m \times n$ matrix A is the subspace of \mathbb{R}^{n} spanned by rows of A.
The dimension of the row space is called the rank of the matrix A.

Theorem 1 The rank of a matrix A is the maximal number of linearly independent rows in A.
Theorem 2 Elementary row operations do not change the row space of a matrix.
Theorem 3 If a matrix A is in row echelon form, then the nonzero rows of A are linearly independent.
Corollary The rank of a matrix is equal to the number of nonzero rows in its row echelon form.

Theorem Elementary row operations do not

 change the row space of a matrix.Proof: Suppose that A and B are $m \times n$ matrices such that B is obtained from A by an elementary row operation. Let $\mathbf{a}_{1}, \ldots, \mathbf{a}_{m}$ be the rows of A and $\mathbf{b}_{1}, \ldots, \mathbf{b}_{m}$ be the rows of B. We have to show that $\operatorname{Span}\left(\mathbf{a}_{1}, \ldots, \mathbf{a}_{m}\right)=\operatorname{Span}\left(\mathbf{b}_{1}, \ldots, \mathbf{b}_{m}\right)$.
Observe that any row \mathbf{b}_{i} of B belongs to $\operatorname{Span}\left(\mathbf{a}_{1}, \ldots, \mathbf{a}_{m}\right)$. Indeed, either $\mathbf{b}_{i}=\mathbf{a}_{j}$ for some $1 \leq j \leq m$, or $\mathbf{b}_{i}=r \mathbf{a}_{i}$ for some scalar $r \neq 0$, or $\mathbf{b}_{i}=\mathbf{a}_{i}+r \mathbf{a}_{j}$ for some $j \neq i$ and $r \in \mathbb{R}$.
It follows that $\operatorname{Span}\left(\mathbf{b}_{1}, \ldots, \mathbf{b}_{m}\right) \subset \operatorname{Span}\left(\mathbf{a}_{1}, \ldots, \mathbf{a}_{m}\right)$.
Now the matrix A can also be obtained from B by an elementary row operation. By the above,

$$
\operatorname{Span}\left(\mathbf{a}_{1}, \ldots, \mathbf{a}_{m}\right) \subset \operatorname{Span}\left(\mathbf{b}_{1}, \ldots, \mathbf{b}_{m}\right)
$$

Problem. Find the rank of the matrix

$$
A=\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
2 & 3 & 1 \\
1 & 1 & 1
\end{array}\right)
$$

Elementary row operations do not change the row space. Let us convert A to row echelon form:

$$
\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
2 & 3 & 1 \\
1 & 1 & 1
\end{array}\right) \rightarrow\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
0 & 1 & 1 \\
1 & 1 & 1
\end{array}\right) \rightarrow\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right)
$$

$$
\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right) \rightarrow\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right) \rightarrow\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right)
$$

Vectors $(1,1,0),(0,1,1)$, and $(0,0,1)$ form a basis for the row space of A. Thus the rank of A is 3 .

Also, it follows that the row space of A is the entire space \mathbb{R}^{3}.

Problem. Find a basis for the vector space V spanned by vectors $\mathbf{w}_{1}=(1,1,0), \mathbf{w}_{2}=(0,1,1)$, $\mathbf{w}_{3}=(2,3,1)$, and $\mathbf{w}_{4}=(1,1,1)$.

The vector space V is the row space of a matrix

$$
\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
2 & 3 & 1 \\
1 & 1 & 1
\end{array}\right) .
$$

According to the solution of the previous problem, vectors $(1,1,0),(0,1,1)$, and $(0,0,1)$ form a basis for V.

Column space of a matrix

Definition. The column space of an $m \times n$ matrix A is the subspace of \mathbb{R}^{m} spanned by columns of A.

Theorem 1 The column space of a matrix A coincides with the row space of the transpose matrix A^{T}.
Theorem 2 Elementary row operations do not change linear relations between columns of a matrix.
Theorem 3 Elementary row operations do not change the dimension of the column space of a matrix (however they can change the column space).
Theorem 4 If a matrix is in row echelon form, then the columns with leading entries form a basis for the column space.
Corollary For any matrix, the row space and the column space have the same dimension.

Problem. Find a basis for the column space of the matrix

$$
A=\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
2 & 3 & 1 \\
1 & 1 & 1
\end{array}\right)
$$

The column space of A coincides with the row space of A^{T}. To find a basis, we convert A^{T} to row echelon form:
$A^{T}=\left(\begin{array}{llll}1 & 0 & 2 & 1 \\ 1 & 1 & 3 & 1 \\ 0 & 1 & 1 & 1\end{array}\right) \rightarrow\left(\begin{array}{llll}1 & 0 & 2 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1\end{array}\right) \rightarrow\left(\begin{array}{llll}1 & 0 & 2 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right)$
Vectors $(1,0,2,1),(0,1,1,0)$, and ($0,0,0,1$) form a basis for the column space of A.

Problem. Find a basis for the column space of the matrix

$$
A=\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
2 & 3 & 1 \\
1 & 1 & 1
\end{array}\right)
$$

Alternative solution: We already know from a previous problem that the rank of A is 3 . It follows that the columns of A are linearly independent. Therefore these columns form a basis for the column space.

Problem. Let V be a vector space spanned by vectors $\mathbf{w}_{1}=(1,1,0), \mathbf{w}_{2}=(0,1,1), \mathbf{w}_{3}=(2,3,1)$, and $\mathbf{w}_{4}=(1,1,1)$. Pare this spanning set to a basis for V.

Alternative solution: The vector space V is the column space of a matrix

$$
B=\left(\begin{array}{llll}
1 & 0 & 2 & 1 \\
1 & 1 & 3 & 1 \\
0 & 1 & 1 & 1
\end{array}\right) .
$$

The row echelon form of B is $C=\left(\begin{array}{llll}1 & 0 & 2 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right)$.
Columns of C with leading entries (1st, 2nd, and 4th) form a basis for the column space of C. It follows that the corresponding columns of B (i.e., 1st, 2nd, and 4th) form a basis for the column space of B.
Thus $\left\{\mathbf{w}_{1}, \mathbf{w}_{2}, \mathbf{w}_{4}\right\}$ is a basis for V.

Nullspace of a matrix

Let $A=\left(a_{i j}\right)$ be an $m \times n$ matrix.
Definition. The nullspace of the matrix A, denoted $N(A)$, is the set of all n-dimensional column vectors \mathbf{x} such that $A \mathbf{x}=\mathbf{0}$.

$$
\left(\begin{array}{ccccc}
a_{11} & a_{12} & a_{13} & \ldots & a_{1 n} \\
a_{21} & a_{22} & a_{23} & \ldots & a_{2 n} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
a_{m 1} & a_{m 2} & a_{m 3} & \ldots & a_{m n}
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
\vdots \\
x_{n}
\end{array}\right)=\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
0
\end{array}\right)
$$

The nullspace $N(A)$ is the solution set of a system of linear homogeneous equations (with A as the coefficient matrix).

Theorem $N(A)$ is a subspace of the vector space \mathbb{R}^{n}.
Definition. The dimension of the nullspace $N(A)$ is called the nullity of the matrix A.

Problem. Find the nullity of the matrix

$$
A=\left(\begin{array}{llll}
1 & 1 & 1 & 1 \\
2 & 3 & 4 & 5
\end{array}\right)
$$

Elementary row operations do not change the nullspace. Let us convert A to reduced row echelon form:

$$
\begin{gathered}
\left(\begin{array}{llll}
1 & 1 & 1 & 1 \\
2 & 3 & 4 & 5
\end{array}\right) \rightarrow\left(\begin{array}{llll}
1 & 1 & 1 & 1 \\
0 & 1 & 2 & 3
\end{array}\right) \rightarrow\left(\begin{array}{rrrr}
1 & 0 & -1 & -2 \\
0 & 1 & 2 & 3
\end{array}\right) \\
\left\{\begin{array} { l }
{ x _ { 1 } - x _ { 3 } - 2 x _ { 4 } = 0 } \\
{ x _ { 2 } + 2 x _ { 3 } + 3 x _ { 4 } = 0 }
\end{array} \Longleftrightarrow \left\{\begin{array}{l}
x_{1}=x_{3}+2 x_{4} \\
x_{2}=-2 x_{3}-3 x_{4}
\end{array}\right.\right.
\end{gathered}
$$

General element of $N(A)$:

$$
\begin{aligned}
\left(x_{1}, x_{2}, x_{3}, x_{4}\right) & =(t+2 s,-2 t-3 s, t, s) \\
& =t(1,-2,1,0)+s(2,-3,0,1), t, s \in \mathbb{R} .
\end{aligned}
$$

Vectors $(1,-2,1,0)$ and $(2,-3,0,1)$ form a basis for $N(A)$. Thus the nullity of the matrix A is 2 .

rank + nullity

Theorem The rank of a matrix A plus the nullity of A equals the number of columns in A.

Sketch of the proof: The rank of A equals the number of nonzero rows in the row echelon form, which equals the number of leading entries.
The nullity of A equals the number of free variables in the corresponding homogeneous system, which equals the number of columns without leading entries in the row echelon form.
Consequently, rank+nullity is the number of all columns in the matrix A.

Problem. Find the nullity of the matrix

$$
A=\left(\begin{array}{llll}
1 & 1 & 1 & 1 \\
2 & 3 & 4 & 5
\end{array}\right)
$$

Alternative solution: Clearly, the rows of A are linearly independent. Therefore the rank of A is 2 .
Since

$$
(\text { rank of } A)+(\text { nullity of } A)=4
$$

it follows that the nullity of A is 2 .

