MATH 304 Linear Algebra

Lecture 20: Basis and coordinates. Change of basis.

Basis and dimension

Definition. Let V be a vector space. A linearly independent spanning set for V is called a **basis**.

Theorem Any vector space V has a basis. If V has a finite basis, then all bases for V are finite and have the same number of elements (called the *dimension* of V).

Example. Vectors $\mathbf{e}_1 = (1, 0, 0, \dots, 0, 0)$, $\mathbf{e}_2 = (0, 1, 0, \dots, 0, 0), \dots, \mathbf{e}_n = (0, 0, 0, \dots, 0, 1)$ form a basis for \mathbb{R}^n (called *standard*) since

$$(x_1, x_2, \ldots, x_n) = x_1 \mathbf{e}_1 + x_2 \mathbf{e}_2 + \cdots + x_n \mathbf{e}_n.$$

Basis and coordinates

If $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ is a basis for a vector space V, then any vector $\mathbf{v} \in V$ has a unique representation

$$\mathbf{v}=x_1\mathbf{v}_1+x_2\mathbf{v}_2+\cdots+x_n\mathbf{v}_n,$$

where $x_i \in \mathbb{R}$. The coefficients x_1, x_2, \ldots, x_n are called the **coordinates** of **v** with respect to the ordered basis $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n$.

The mapping

vector $\mathbf{v} \mapsto its$ coordinates (x_1, x_2, \dots, x_n)

is a one-to-one correspondence between V and \mathbb{R}^n . This correspondence respects linear operations in V and in \mathbb{R}^n . *Examples.* • Coordinates of a vector $\mathbf{v} = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n$ relative to the standard basis $\mathbf{e}_1 = (1, 0, \dots, 0, 0)$, $\mathbf{e}_2 = (0, 1, \dots, 0, 0)$,..., $\mathbf{e}_n = (0, 0, \dots, 0, 1)$ are (x_1, x_2, \dots, x_n) .

• Coordinates of a matrix $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathcal{M}_{2,2}(\mathbb{R})$ relative to the basis $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$.

• Coordinates of a polynomial $p(x) = a_0 + a_1x + \cdots + a_{n-1}x^{n-1} \in \mathcal{P}_n$ relative to the basis $1, x, x^2, \ldots, x^{n-1}$ are $(a_0, a_1, \ldots, a_{n-1})$.

Weird vector space

Consider the set $V = \mathbb{R}_+$ of positive numbers with a nonstandard addition and scalar multiplication:

$$x \oplus y = xy$$
for any $x, y \in \mathbb{R}_+$. $r \odot x = x^r$ for any $x \in \mathbb{R}_+$ and $r \in \mathbb{R}$.

This is an example of a vector space.

The zero vector in V is the number 1. To build a basis for V, we can begin with any number $v \in V$ different from 1. Let's take v = 2. The span Span(2) consists of all numbers of the form $r \odot 2 = 2^r$, $r \in \mathbb{R}$. It is the entire space V. Hence $\{2\}$ is a basis for V so that dim V = 1.

The coordinate mapping $f: V \to \mathbb{R}$ associated to this basis is given by $f(2^r) = r$ for all $r \in \mathbb{R}$. Equivalently, $f(x) = \log_2 x$, $x \in V$. Notice that $\log_2(x \oplus y) = \log_2 x + \log_2 y$ and $\log_2(r \odot x) = r \log_2 x$.

Vectors $\mathbf{u}_1 = (3, 1)$ and $\mathbf{u}_2 = (2, 1)$ form a basis for \mathbb{R}^2 . **Problem 1.** Find coordinates of the vector $\mathbf{v} = (7, 4)$ with respect to the basis $\mathbf{u}_1, \mathbf{u}_2$.

The desired coordinates x, y satisfy

$$\mathbf{v} = x\mathbf{u}_1 + y\mathbf{u}_2 \iff \begin{cases} 3x + 2y = 7\\ x + y = 4 \end{cases} \iff \begin{cases} x = -1\\ y = 5 \end{cases}$$

Problem 2. Find the vector \mathbf{w} whose coordinates with respect to the basis $\mathbf{u}_1, \mathbf{u}_2$ are (7, 4).

$$w = 7u_1 + 4u_2 = 7(3,1) + 4(2,1) = (29,11)$$

Change of coordinates

Given a vector $\mathbf{v} \in \mathbb{R}^2$, let (x, y) be its standard coordinates, i.e., coordinates with respect to the standard basis $\mathbf{e}_1 = (1, 0)$, $\mathbf{e}_2 = (0, 1)$, and let (x', y') be its coordinates with respect to the basis $\mathbf{u}_1 = (3, 1)$, $\mathbf{u}_2 = (2, 1)$.

Problem. Find a relation between (x, y) and (x', y'). By definition, $\mathbf{v} = x\mathbf{e}_1 + y\mathbf{e}_2 = x'\mathbf{u}_1 + y'\mathbf{u}_2$. In standard coordinates,

$$\begin{pmatrix} x \\ y \end{pmatrix} = x' \begin{pmatrix} 3 \\ 1 \end{pmatrix} + y' \begin{pmatrix} 2 \\ 1 \end{pmatrix} = \begin{pmatrix} 3 & 2 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} x' \\ y' \end{pmatrix}$$
$$\implies \begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} 3 & 2 \\ 1 & 1 \end{pmatrix}^{-1} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 & -2 \\ -1 & 3 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

Change of coordinates in \mathbb{R}^n

The usual (standard) coordinates of a vector $\mathbf{v} = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n$ are coordinates relative to the standard basis $\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n$. Let $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n$ be another basis for \mathbb{R}^n and $(x'_1, x'_2, \dots, x'_n)$ be the coordinates of the same vector \mathbf{v} with respect to this basis. Then

$$\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} u_{11} & u_{12} & \dots & u_{1n} \\ u_{21} & u_{22} & \dots & u_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ u_{n1} & u_{n2} & \dots & u_{nn} \end{pmatrix} \begin{pmatrix} x'_1 \\ x'_2 \\ \vdots \\ x'_n \end{pmatrix},$$

where the matrix $U = (u_{ij})$ does not depend on the vector **v**. Namely, columns of U are coordinates of vectors $\mathbf{u}_1, \mathbf{u}_2, \ldots, \mathbf{u}_n$ with respect to the standard basis. U is called the **transition matrix** from the basis $\mathbf{u}_1, \mathbf{u}_2, \ldots, \mathbf{u}_n$ to the standard basis $\mathbf{e}_1, \mathbf{e}_2, \ldots, \mathbf{e}_n$. The inverse matrix U^{-1} is called the **transition matrix** from $\mathbf{e}_1, \ldots, \mathbf{e}_n$ to $\mathbf{u}_1, \ldots, \mathbf{u}_n$. **Problem.** Find coordinates of the vector $\mathbf{x} = (1, 2, 3)$ with respect to the basis $\mathbf{u}_1 = (1, 1, 0)$, $\mathbf{u}_2 = (0, 1, 1)$, $\mathbf{u}_3 = (1, 1, 1)$.

The nonstandard coordinates (x', y', z') of **x** satisfy

$$\begin{pmatrix} x'\\ y'\\ z' \end{pmatrix} = U \begin{pmatrix} 1\\ 2\\ 3 \end{pmatrix},$$

where U is the transition matrix from the standard basis $\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3$ to the basis $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3$.

The transition matrix from $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3$ to $\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3$ is

$$U_0 = (\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3) = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix}.$$

The transition matrix from $\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3$ to $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3$ is the inverse matrix: $U = U_0^{-1}$.

The inverse matrix can be computed using row reduction.

$$\begin{aligned} (U_0 \mid I) &= \begin{pmatrix} 1 & 0 & 1 \mid 1 & 0 & 0 \\ 1 & 1 & 1 \mid 0 & 1 & 0 \\ 0 & 1 & 1 \mid 0 & 0 & 1 \end{pmatrix} \\ &\to \begin{pmatrix} 1 & 0 & 1 \mid & 1 & 0 & 0 \\ 0 & 1 & 0 \mid & -1 & 1 & 0 \\ 0 & 1 & 1 \mid & 0 & 0 & 1 \end{pmatrix} \to \begin{pmatrix} 1 & 0 & 1 \mid & 1 & 0 & 0 \\ 0 & 1 & 0 \mid & -1 & 1 & 0 \\ 0 & 0 & 1 \mid & 1 & -1 & 1 \end{pmatrix} \\ &\to \begin{pmatrix} 1 & 0 & 0 \mid & 0 & 1 & -1 \\ 0 & 1 & 0 \mid & -1 & 1 & 0 \\ 0 & 0 & 1 \mid & 1 & -1 & 1 \end{pmatrix} = (I \mid U_0^{-1}) \end{aligned}$$

Thus

$$\begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = \begin{pmatrix} 0 & 1 & -1 \\ -1 & 1 & 0 \\ 1 & -1 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} = \begin{pmatrix} -1 \\ 1 \\ 2 \end{pmatrix}.$$

Change of coordinates: general case

Let V be a vector space of dimension n.

Let $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ be a basis for V and $g_1 : V \to \mathbb{R}^n$ be the coordinate mapping corresponding to this basis.

Let $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n$ be another basis for V and $g_2: V \to \mathbb{R}^n$ be the coordinate mapping corresponding to this basis.

The composition $g_2 \circ g_1^{-1}$ is a transformation of \mathbb{R}^n . It has the form $\mathbf{x} \mapsto U\mathbf{x}$, where U is an $n \times n$ matrix. U is called the **transition matrix** from $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n$ to $\mathbf{u}_1, \mathbf{u}_2, \ldots, \mathbf{u}_n$. Columns of U are coordinates of the vectors $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n$ with respect to the basis $\mathbf{u}_1, \mathbf{u}_2, \ldots, \mathbf{u}_n$. **Problem.** Find the transition matrix from the basis $p_1(x) = 1$, $p_2(x) = x + 1$, $p_3(x) = (x + 1)^2$ to the basis $q_1(x) = 1$, $q_2(x) = x$, $q_3(x) = x^2$ for the vector space \mathcal{P}_3 .

We have to find coordinates of the polynomials p_1, p_2, p_3 with respect to the basis q_1, q_2, q_3 : $p_1(x) = 1 = q_1(x),$ $p_2(x) = x + 1 = q_1(x) + q_2(x),$ $p_3(x) = (x+1)^2 = x^2 + 2x + 1 = q_1(x) + 2q_2(x) + q_3(x).$ Hence the transition matrix is $\begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix}$.

Thus the polynomial identity $a_1 + a_2(x+1) + a_3(x+1)^2 = b_1 + b_2x + b_3x^2$

is equivalent to the relation

$$egin{pmatrix} b_1 \ b_2 \ b_3 \end{pmatrix} = egin{pmatrix} 1 & 1 & 1 \ 0 & 1 & 2 \ 0 & 0 & 1 \end{pmatrix} egin{pmatrix} a_1 \ a_2 \ a_3 \end{pmatrix}.$$

Problem. Find the transition matrix from the basis $\mathbf{v}_1 = (1, 2, 3)$, $\mathbf{v}_2 = (1, 0, 1)$, $\mathbf{v}_3 = (1, 2, 1)$ to the basis $\mathbf{u}_1 = (1, 1, 0)$, $\mathbf{u}_2 = (0, 1, 1)$, $\mathbf{u}_3 = (1, 1, 1)$.

It is convenient to make a two-step transition: first from $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ to $\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3$, and then from $\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3$ to $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3$.

Let U_1 be the transition matrix from $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ to $\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3$ and U_2 be the transition matrix from $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3$ to $\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3$:

$$U_1 = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 0 & 2 \\ 3 & 1 & 1 \end{pmatrix}, \qquad U_2 = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix}$$

Basis $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3 \implies$ coordinates \mathbf{x} Basis $\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3 \implies$ coordinates $U_1 \mathbf{x}$ Basis $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3 \implies$ coordinates $U_2^{-1}(U_1 \mathbf{x}) = (U_2^{-1}U_1) \mathbf{x}$

Thus the transition matrix from $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ to $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3$ is $U_2^{-1}U_1$.

$$U_2^{-1}U_1 = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix}^{-1} \begin{pmatrix} 1 & 1 & 1 \\ 2 & 0 & 2 \\ 3 & 1 & 1 \end{pmatrix}$$
$$= \begin{pmatrix} 0 & 1 & -1 \\ -1 & 1 & 0 \\ 1 & -1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 2 & 0 & 2 \\ 3 & 1 & 1 \end{pmatrix} = \begin{pmatrix} -1 & -1 & 1 \\ 1 & -1 & 1 \\ 2 & 2 & 0 \end{pmatrix}$$