> MATH 304
> Linear Algebra

Lecture 26:

Eigenvalues and eigenvectors (continued). Basis of eigenvectors. Diagonalization.

Eigenvalues and eigenvectors of an operator

Definition. Let V be a vector space and
$L: V \rightarrow V$ be a linear operator. A number λ is
called an eigenvalue of the operator L if
$L(\mathbf{v})=\lambda \mathbf{v}$ for a nonzero vector $\mathbf{v} \in V$. The vector \mathbf{v} is called an eigenvector of L associated with the eigenvalue λ.

The set V_{λ} of all eigenvectors of L associated with the eigenvalue λ along with the zero vector is a subspace of V. It is called the eigenspace of L corresponding to the eigenvalue λ.

Example. $\quad V=C^{\infty}(\mathbb{R}), \quad D: V \rightarrow V, \quad D f=f^{\prime}$.
A function $f \in C^{\infty}(\mathbb{R})$ is an eigenfunction of the operator D belonging to an eigenvalue λ if $f^{\prime}(x)=\lambda f(x)$ for all $x \in \mathbb{R}$.
It follows that $f(x)=c e^{\lambda x}$, where c is a nonzero constant.

Thus each $\lambda \in \mathbb{R}$ is an eigenvalue of D.
The corresponding eigenspace is spanned by $e^{\lambda x}$.

Example. $\quad V=C^{\infty}(\mathbb{R}), \quad L: V \rightarrow V, \quad L f=f^{\prime \prime}$. $L f=\lambda f \Longleftrightarrow f^{\prime \prime}(x)-\lambda f(x)=0$ for all $x \in \mathbb{R}$.

It follows that each $\lambda \in \mathbb{R}$ is an eigenvalue of L and the corresponding eigenspace V_{λ} is two-dimensional. Note that $L=D^{2}$, hence $D f=\mu f \Longrightarrow L f=\mu^{2} f$. If $\lambda>0$ then $V_{\lambda}=\operatorname{Span}\left(e^{\mu x}, e^{-\mu x}\right)$, where $\mu=\sqrt{\lambda}$.

If $\lambda<0$ then $V_{\lambda}=\operatorname{Span}(\sin (\mu x), \cos (\mu x))$, where $\mu=\sqrt{-\lambda}$.
If $\lambda=0$ then $V_{\lambda}=\operatorname{Span}(1, x)$.

Let V be a vector space and $L: V \rightarrow V$ be a linear operator.

Proposition 1 If $\mathbf{v} \in V$ is an eigenvector of the operator L then the associated eigenvalue is unique.

Proof: Suppose that $L(\mathbf{v})=\lambda_{1} \mathbf{v}$ and $L(\mathbf{v})=\lambda_{2} \mathbf{v}$. Then $\lambda_{1} \mathbf{v}=\lambda_{2} \mathbf{v} \Longrightarrow\left(\lambda_{1}-\lambda_{2}\right) \mathbf{v}=\mathbf{0} \Longrightarrow \lambda_{1}-\lambda_{2}=0 \Longrightarrow \lambda_{1}=\lambda_{2}$.

Proposition 2 Suppose \mathbf{v}_{1} and \mathbf{v}_{2} are eigenvectors of L associated with different eigenvalues λ_{1} and λ_{2}. Then \mathbf{v}_{1} and \mathbf{v}_{2} are linearly independent.

Proof: For any scalar $t \neq 0$ the vector $t \mathbf{v}_{1}$ is also an eigenvector of L associated with the eigenvalue λ_{1}. Since $\lambda_{2} \neq \lambda_{1}$, it follows that $\mathbf{v}_{2} \neq t \mathbf{v}_{1}$. That is, \mathbf{v}_{2} is not a scalar multiple of \mathbf{v}_{1}. Similarly, \mathbf{v}_{1} is not a scalar multiple of \mathbf{v}_{2}.

Let $L: V \rightarrow V$ be a linear operator.
Proposition 3 If $\mathbf{v}_{1}, \mathbf{v}_{2}$, and \mathbf{v}_{3} are eigenvectors of L associated with distinct eigenvalues λ_{1}, λ_{2}, and λ_{3}, then they are linearly independent.
Proof: Suppose that $t_{1} \mathbf{v}_{1}+t_{2} \mathbf{v}_{2}+t_{3} \mathbf{v}_{3}=\mathbf{0}$ for some $t_{1}, t_{2}, t_{3} \in \mathbb{R}$. Then

$$
\begin{gathered}
L\left(t_{1} \mathbf{v}_{1}+t_{2} \mathbf{v}_{2}+t_{3} \mathbf{v}_{3}\right)=\mathbf{0}, \\
t_{1} L\left(\mathbf{v}_{1}\right)+t_{2} L\left(\mathbf{v}_{2}\right)+t_{3} L\left(\mathbf{v}_{3}\right)=\mathbf{0}, \\
t_{1} \lambda_{1} \mathbf{v}_{1}+t_{2} \lambda_{2} \mathbf{v}_{2}+t_{3} \lambda_{3} \mathbf{v}_{3}=\mathbf{0} .
\end{gathered}
$$

It follows that

$$
\begin{gathered}
t_{1} \lambda_{1} \mathbf{v}_{1}+t_{2} \lambda_{2} \mathbf{v}_{2}+t_{3} \lambda_{3} \mathbf{v}_{3}-\lambda_{3}\left(t_{1} \mathbf{v}_{1}+t_{2} \mathbf{v}_{2}+t_{3} \mathbf{v}_{3}\right)=\mathbf{0} \\
\quad \Longrightarrow t_{1}\left(\lambda_{1}-\lambda_{3}\right) \mathbf{v}_{1}+t_{2}\left(\lambda_{2}-\lambda_{3}\right) \mathbf{v}_{2}=\mathbf{0} .
\end{gathered}
$$

By the above, \mathbf{v}_{1} and \mathbf{v}_{2} are linearly independent. Hence $t_{1}\left(\lambda_{1}-\lambda_{3}\right)=t_{2}\left(\lambda_{2}-\lambda_{3}\right)=0 \Longrightarrow t_{1}=t_{2}=0$ Then $t_{3}=0$ as well.

Theorem If $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}$ are eigenvectors of a linear operator L associated with distinct eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$, then $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}$ are linearly independent.

Corollary If $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$ are distinct real numbers, then the functions $e^{\lambda_{1} x}, e^{\lambda_{2} x}, \ldots, e^{\lambda_{k} x}$ are linearly independent.

Proof: Consider a linear operator $D: C^{\infty}(\mathbb{R}) \rightarrow C^{\infty}(\mathbb{R})$ given by $D f=f^{\prime}$. Then $e^{\lambda_{1} x}, \ldots, e^{\lambda_{k} x}$ are eigenfunctions of D associated with distinct eigenvalues $\lambda_{1}, \ldots, \lambda_{k}$. By the theorem, the eigenfunctions are linearly independent.

Basis of eigenvectors

Let V be a finite-dimensional vector space and $L: V \rightarrow V$ be a linear operator. Let $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$ be a basis for V and A be the matrix of the operator L with respect to this basis.

Theorem The matrix A is diagonal if and only if vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$ are eigenvectors of L. If this is the case, then the diagonal entries of the matrix A are the corresponding eigenvalues of L.

$$
L\left(\mathbf{v}_{i}\right)=\lambda_{i} \mathbf{v}_{i} \Longleftrightarrow A=\left(\begin{array}{llll}
\lambda_{1} & & & O \\
& \lambda_{2} & & \\
& & \ddots & \\
O & & & \lambda_{n}
\end{array}\right)
$$

How to find a basis of eigenvectors

Theorem If $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}$ are eigenvectors of a linear operator L associated with distinct eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$, then $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}$ are linearly independent.

Corollary 1 Suppose $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$ are all eigenvalues of a linear operator $L: V \rightarrow V$. For any $1 \leq i \leq k$, let S_{i} be a basis for the eigenspace associated to the eigenvalue λ_{i}. Then these bases are disjoint and the union $S=S_{1} \cup S_{2} \cup \cdots \cup S_{k}$ is a linearly independent set.

Moreover, if the vector space V admits a basis consisting of eigenvectors of L, then S is such a basis.

Corollary 2 Let A be an $n \times n$ matrix such that the characteristic equation $\operatorname{det}(A-\lambda /)=0$ has n distinct roots. Then (i) there is a basis for \mathbb{R}^{n} consisting of eigenvectors of A; (ii) all eigenspaces of A are one-dimensional.

Diagonalization

Theorem 1 Let L be a linear operator on a finite-dimensional vector space V. Then the following conditions are equivalent:

- the matrix of L with respect to some basis is diagonal;
- there exists a basis for V formed by eigenvectors of L.

The operator L is diagonalizable if it satisfies these conditions.

Theorem 2 Let A be an $n \times n$ matrix. Then the following conditions are equivalent:

- A is the matrix of a diagonalizable operator;
- A is similar to a diagonal matrix, i.e., it is represented as
$A=U B U^{-1}$, where the matrix B is diagonal;
- there exists a basis for \mathbb{R}^{n} formed by eigenvectors of A.

The matrix A is diagonalizable if it satisfies these conditions.

Example. $\quad A=\left(\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right)$.

- The matrix A has two eigenvalues: 1 and 3 .
- The eigenspace of A associated with the eigenvalue 1 is the line spanned by $\mathbf{v}_{1}=(-1,1)$.
- The eigenspace of A associated with the eigenvalue 3 is the line spanned by $\mathbf{v}_{2}=(1,1)$. - Eigenvectors \mathbf{v}_{1} and \mathbf{v}_{2} form a basis for \mathbb{R}^{2}.

Thus the matrix A is diagonalizable. Namely, $A=U B U^{-1}$, where

$$
B=\left(\begin{array}{ll}
1 & 0 \\
0 & 3
\end{array}\right), \quad U=\left(\begin{array}{rr}
-1 & 1 \\
1 & 1
\end{array}\right) .
$$

Notice that U is the transition matrix from the basis $\mathbf{v}_{1}, \mathbf{v}_{2}$ to the standard basis.

Example. $\quad A=\left(\begin{array}{rrr}1 & 1 & -1 \\ 1 & 1 & 1 \\ 0 & 0 & 2\end{array}\right)$.

- The matrix A has two eigenvalues: 0 and 2 .
- The eigenspace for 0 is one-dimensional; it has a basis
$S_{1}=\left\{\mathbf{v}_{1}\right\}$, where $\mathbf{v}_{1}=(-1,1,0)$.
- The eigenspace for 2 is two-dimensional; it has a basis
$S_{2}=\left\{\mathbf{v}_{2}, \mathbf{v}_{3}\right\}$, where $\mathbf{v}_{2}=(1,1,0), \mathbf{v}_{3}=(-1,0,1)$.
- The union $S_{1} \cup S_{2}=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ is a linearly independent set, hence it is a basis for \mathbb{R}^{3}.

Thus the matrix A is diagonalizable. Namely, $A=U B U^{-1}$, where

$$
B=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right), \quad U=\left(\begin{array}{rrr}
-1 & 1 & -1 \\
1 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) .
$$

