MATH 304 Linear Algebra Lecture 26: Eigenvalues and eigenvectors (continued). Basis of eigenvectors. Diagonalization.

Eigenvalues and eigenvectors of an operator

Definition. Let V be a vector space and $L: V \to V$ be a linear operator. A number λ is called an **eigenvalue** of the operator L if $L(\mathbf{v}) = \lambda \mathbf{v}$ for a nonzero vector $\mathbf{v} \in V$. The vector \mathbf{v} is called an **eigenvector** of L associated with the eigenvalue λ .

The set V_{λ} of all eigenvectors of L associated with the eigenvalue λ along with the zero vector is a subspace of V. It is called the **eigenspace** of Lcorresponding to the eigenvalue λ .

Example.
$$V=C^\infty(\mathbb{R}), \ D:V o V, \ Df=f'.$$

A function $f \in C^{\infty}(\mathbb{R})$ is an eigenfunction of the operator D belonging to an eigenvalue λ if $f'(x) = \lambda f(x)$ for all $x \in \mathbb{R}$.

It follows that $f(x) = ce^{\lambda x}$, where c is a nonzero constant.

Thus each $\lambda \in \mathbb{R}$ is an eigenvalue of D. The corresponding eigenspace is spanned by $e^{\lambda x}$.

Example.
$$V=C^\infty(\mathbb{R}),\ L:V o V,\ Lf=f''.$$

$$Lf = \lambda f \iff f''(x) - \lambda f(x) = 0$$
 for all $x \in \mathbb{R}$.

It follows that each $\lambda \in \mathbb{R}$ is an eigenvalue of L and the corresponding eigenspace V_{λ} is two-dimensional. Note that $L = D^2$, hence $Df = \mu f \implies Lf = \mu^2 f$.

If
$$\lambda > 0$$
 then $V_{\lambda} = \text{Span}(e^{\mu x}, e^{-\mu x})$, where $\mu = \sqrt{\lambda}$.

If $\lambda < 0$ then $V_{\lambda} = \text{Span}(\sin(\mu x), \cos(\mu x))$, where $\mu = \sqrt{-\lambda}$.

If $\lambda = 0$ then $V_{\lambda} = \text{Span}(1, x)$.

Let V be a vector space and $L: V \rightarrow V$ be a linear operator.

Proposition 1 If $\mathbf{v} \in V$ is an eigenvector of the operator *L* then the associated eigenvalue is unique.

Proof: Suppose that $L(\mathbf{v}) = \lambda_1 \mathbf{v}$ and $L(\mathbf{v}) = \lambda_2 \mathbf{v}$. Then $\lambda_1 \mathbf{v} = \lambda_2 \mathbf{v} \implies (\lambda_1 - \lambda_2) \mathbf{v} = \mathbf{0} \implies \lambda_1 - \lambda_2 = \mathbf{0} \implies \lambda_1 = \lambda_2$.

Proposition 2 Suppose \mathbf{v}_1 and \mathbf{v}_2 are eigenvectors of *L* associated with different eigenvalues λ_1 and λ_2 . Then \mathbf{v}_1 and \mathbf{v}_2 are linearly independent.

Proof: For any scalar $t \neq 0$ the vector $t\mathbf{v}_1$ is also an eigenvector of L associated with the eigenvalue λ_1 . Since $\lambda_2 \neq \lambda_1$, it follows that $\mathbf{v}_2 \neq t\mathbf{v}_1$. That is, \mathbf{v}_2 is not a scalar multiple of \mathbf{v}_1 . Similarly, \mathbf{v}_1 is not a scalar multiple of \mathbf{v}_2 .

Let $L: V \to V$ be a linear operator.

Proposition 3 If \mathbf{v}_1 , \mathbf{v}_2 , and \mathbf{v}_3 are eigenvectors of L associated with distinct eigenvalues λ_1 , λ_2 , and λ_3 , then they are linearly independent.

Proof: Suppose that $t_1\mathbf{v}_1 + t_2\mathbf{v}_2 + t_3\mathbf{v}_3 = \mathbf{0}$ for some $t_1, t_2, t_3 \in \mathbb{R}$. Then

$$L(t_1\mathbf{v}_1 + t_2\mathbf{v}_2 + t_3\mathbf{v}_3) = \mathbf{0}, t_1L(\mathbf{v}_1) + t_2L(\mathbf{v}_2) + t_3L(\mathbf{v}_3) = \mathbf{0}, t_1\lambda_1\mathbf{v}_1 + t_2\lambda_2\mathbf{v}_2 + t_3\lambda_3\mathbf{v}_3 = \mathbf{0}.$$

It follows that

$$t_1\lambda_1\mathbf{v}_1 + t_2\lambda_2\mathbf{v}_2 + t_3\lambda_3\mathbf{v}_3 - \lambda_3(t_1\mathbf{v}_1 + t_2\mathbf{v}_2 + t_3\mathbf{v}_3) = \mathbf{0}$$

$$\implies t_1(\lambda_1 - \lambda_3)\mathbf{v}_1 + t_2(\lambda_2 - \lambda_3)\mathbf{v}_2 = \mathbf{0}.$$

By the above, \mathbf{v}_1 and \mathbf{v}_2 are linearly independent. Hence $t_1(\lambda_1 - \lambda_3) = t_2(\lambda_2 - \lambda_3) = 0 \implies t_1 = t_2 = 0$ Then $t_3 = 0$ as well. **Theorem** If $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_k$ are eigenvectors of a linear operator L associated with distinct eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_k$, then $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_k$ are linearly independent.

Corollary If $\lambda_1, \lambda_2, \ldots, \lambda_k$ are distinct real numbers, then the functions $e^{\lambda_1 x}, e^{\lambda_2 x}, \ldots, e^{\lambda_k x}$ are linearly independent.

Proof: Consider a linear operator $D: C^{\infty}(\mathbb{R}) \to C^{\infty}(\mathbb{R})$ given by Df = f'. Then $e^{\lambda_1 x}, \ldots, e^{\lambda_k x}$ are eigenfunctions of D associated with distinct eigenvalues $\lambda_1, \ldots, \lambda_k$. By the theorem, the eigenfunctions are linearly independent.

Basis of eigenvectors

Let V be a finite-dimensional vector space and $L: V \to V$ be a linear operator. Let $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ be a basis for V and A be the matrix of the operator L with respect to this basis.

Theorem The matrix A is diagonal if and only if vectors $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n$ are eigenvectors of L. If this is the case, then the diagonal entries of the matrix A are the corresponding eigenvalues of L.

$$L(\mathbf{v}_i) = \lambda_i \mathbf{v}_i \iff A = \begin{pmatrix} \lambda_1 & & O \\ & \lambda_2 & \\ & & \ddots & \\ O & & & \lambda_n \end{pmatrix}$$

How to find a basis of eigenvectors

Theorem If $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ are eigenvectors of a linear operator *L* associated with distinct eigenvalues $\lambda_1, \lambda_2, \dots, \lambda_k$, then $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ are linearly independent.

Corollary 1 Suppose $\lambda_1, \lambda_2, \ldots, \lambda_k$ are all eigenvalues of a linear operator $L: V \to V$. For any $1 \le i \le k$, let S_i be a basis for the eigenspace associated to the eigenvalue λ_i . Then these bases are disjoint and the union $S = S_1 \cup S_2 \cup \cdots \cup S_k$ is a linearly independent set.

Moreover, if the vector space V admits a basis consisting of eigenvectors of L, then S is such a basis.

Corollary 2 Let A be an $n \times n$ matrix such that the characteristic equation $det(A - \lambda I) = 0$ has n distinct roots. Then (i) there is a basis for \mathbb{R}^n consisting of eigenvectors of A; (ii) all eigenspaces of A are one-dimensional.

Diagonalization

Theorem 1 Let L be a linear operator on a finite-dimensional vector space V. Then the following conditions are equivalent:

- the matrix of *L* with respect to some basis is diagonal;
- there exists a basis for V formed by eigenvectors of L.

The operator L is **diagonalizable** if it satisfies these conditions.

Theorem 2 Let A be an $n \times n$ matrix. Then the following conditions are equivalent:

- A is the matrix of a diagonalizable operator;
- A is similar to a diagonal matrix, i.e., it is represented as $A = UBU^{-1}$, where the matrix B is diagonal;
- there exists a basis for \mathbb{R}^n formed by eigenvectors of A.

The matrix A is **diagonalizable** if it satisfies these conditions.

Example.
$$A = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$$
.

- The matrix A has two eigenvalues: 1 and 3.
- The eigenspace of A associated with the eigenvalue 1 is the line spanned by $\mathbf{v}_1 = (-1, 1)$.
- The eigenspace of A associated with the eigenvalue 3 is the line spanned by $\mathbf{v}_2 = (1, 1)$.
 - Eigenvectors \mathbf{v}_1 and \mathbf{v}_2 form a basis for \mathbb{R}^2 .
- Thus the matrix A is diagonalizable. Namely, $A = UBU^{-1}$, where

$$B = \begin{pmatrix} 1 & 0 \\ 0 & 3 \end{pmatrix}, \qquad U = \begin{pmatrix} -1 & 1 \\ 1 & 1 \end{pmatrix}.$$

Notice that U is the transition matrix from the basis $\mathbf{v}_1, \mathbf{v}_2$ to the standard basis.

Example.
$$A = \begin{pmatrix} 1 & 1 & -1 \\ 1 & 1 & 1 \\ 0 & 0 & 2 \end{pmatrix}$$

- The matrix A has two eigenvalues: 0 and 2.
- The eigenspace for 0 is one-dimensional; it has a basis $S_1 = \{\mathbf{v}_1\}$, where $\mathbf{v}_1 = (-1, 1, 0)$.
- The eigenspace for 2 is two-dimensional; it has a basis $S_2 = \{\mathbf{v}_2, \mathbf{v}_3\}$, where $\mathbf{v}_2 = (1, 1, 0)$, $\mathbf{v}_3 = (-1, 0, 1)$.

• The union $S_1 \cup S_2 = \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is a linearly independent set, hence it is a basis for \mathbb{R}^3 .

Thus the matrix A is diagonalizable. Namely, $A = UBU^{-1}$, where

$$B = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}, \qquad U = \begin{pmatrix} -1 & 1 & -1 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$