MATH 304

Lecture 27:

Linear Algebra

Diagonalization (continued).

Euclidean structure in \mathbb{R}^n .

Diagonalization

Theorem 1 Let L be a linear operator on a finite-dimensional vector space V. Then the following conditions are equivalent:

- the matrix of L with respect to some basis is diagonal;
- there exists a basis for *V* formed by eigenvectors of *L*.

The operator *L* is **diagonalizable** if it satisfies these conditions.

Theorem 2 Let A be an $n \times n$ matrix. Then the following conditions are equivalent:

- A is the matrix of a diagonalizable operator;
- A is similar to a diagonal matrix, i.e., it is represented as

 $A = UBU^{-1}$, where the matrix B is diagonal;

• there exists a basis for \mathbb{R}^n formed by eigenvectors of A.

The matrix A is **diagonalizable** if it satisfies these conditions.

To diagonalize an $n \times n$ matrix A is to find a diagonal matrix B and an invertible matrix U such that $A = UBU^{-1}$.

Suppose there exists a basis $\mathbf{v}_1, \dots, \mathbf{v}_n$ for \mathbb{R}^n consisting of eigenvectors of A. That is, $A\mathbf{v}_k = \lambda_k \mathbf{v}_k$, where $\lambda_k \in \mathbb{R}$.

Then $A = UBU^{-1}$, where $B = \operatorname{diag}(\lambda_1, \lambda_2, \dots, \lambda_n)$ and U is a transition matrix whose columns are vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$.

Example.
$$A = \begin{pmatrix} 4 & 3 \\ 0 & 1 \end{pmatrix}$$
. $det(A - \lambda I) = (4 - \lambda)(1 - \lambda)$.

Eigenvalues: $\lambda_1 = 4$, $\lambda_2 = 1$.

Associated eigenvectors:
$$\mathbf{v}_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
, $\mathbf{v}_2 = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$.

Thus $A = UBU^{-1}$, where

$$B = \begin{pmatrix} 4 & 0 \\ 0 & 1 \end{pmatrix}, \qquad U = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}.$$

Suppose we have a problem that involves a square matrix A in the context of matrix multiplication.

Also, suppose that the case when A is a diagonal matrix is simple. Then the diagonalization may help in solving this problem (or may not). Namely, it may reduce the case of a diagonalizable matrix to that of a diagonal one.

An example of such a problem is, given a square matrix A, to find its power A^k :

$$A = \begin{pmatrix} s_1 & & & O \\ & s_2 & & \\ & & \ddots & \\ O & & & s_n \end{pmatrix} \implies A^k = \begin{pmatrix} s_1^k & & & O \\ & s_2^k & & \\ & & \ddots & \\ O & & & s_n^k \end{pmatrix}$$

Problem. Let $A = \begin{pmatrix} 4 & 3 \\ 0 & 1 \end{pmatrix}$. Find A^5 .

We know that $A = UBU^{-1}$. where

We know that
$$A = UBU^{-1}$$
, where

 $B = \begin{pmatrix} 4 & 0 \\ 0 & 1 \end{pmatrix}, \qquad U = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}.$

Then
$$A^5 = UBU^{-1}UBU^{-1}UBU^{-1}UBU^{-1}UBU^{-1}UBU^{-1}$$

$$= UB^5U^{-1} = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1024 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$

 $=\begin{pmatrix}1024 & -1\\0 & 1\end{pmatrix}\begin{pmatrix}1 & 1\\0 & 1\end{pmatrix}=\begin{pmatrix}1024 & 1023\\0 & 1\end{pmatrix}.$

Problem. Let $A = \begin{pmatrix} 4 & 3 \\ 0 & 1 \end{pmatrix}$. Find A^k $(k \ge 1)$.

We know that $A = UBU^{-1}$, where

$$B = \begin{pmatrix} 4 & 0 \\ 0 & 1 \end{pmatrix}, \qquad U = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}$$

Then
$$A^k = UB^kU^{-1} = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 4^k & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 4^k & 4^k - 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 4^k & 4^k - 1 \\ 0 & 1 \end{pmatrix}.$$

 $B = \begin{pmatrix} 4 & 0 \\ 0 & 1 \end{pmatrix}, \qquad U = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}.$

Problem. Let $A = \begin{pmatrix} 4 & 3 \\ 0 & 1 \end{pmatrix}$. Find a matrix C such that $C^2 = A$.

We know that $A = UBU^{-1}$, where

$$B = \begin{pmatrix} 4 & 0 \\ 0 & 1 \end{pmatrix}, \qquad U = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}.$$

Suppose that $D^2 = B$ for some matrix D. Let $C = UDU^{-1}$. Then $C^2 = UDU^{-1}UDU^{-1} = UD^2U^{-1} = UBU^{-1} = A$.

We can take
$$D = \begin{pmatrix} \sqrt{4} & 0 \\ 0 & \sqrt{1} \end{pmatrix} = \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}$$
.

Then
$$C = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 1 \\ 0 & 1 \end{pmatrix}.$$

Initial value problem for a system of linear ODEs:

$$\begin{cases} \frac{dx}{dt} = 4x + 3y, \\ \frac{dy}{dt} = y, \end{cases} x(0) = 1, y(0) = 1.$$

The system can be rewritten in vector form:

$$rac{d\mathbf{v}}{dt} = A\mathbf{v}$$
, where $A = \begin{pmatrix} 4 & 3 \\ 0 & 1 \end{pmatrix}$, $\mathbf{v} = \begin{pmatrix} x \\ y \end{pmatrix}$.

Matrix A is diagonalizable: $A = UBU^{-1}$, where

$$B = \begin{pmatrix} 4 & 0 \\ 0 & 1 \end{pmatrix}, \qquad U = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}.$$

Let $\mathbf{w} = \begin{pmatrix} w_1 \\ w_2 \end{pmatrix}$ be coordinates of the vector \mathbf{v} relative to the basis $\mathbf{v}_1 = (1,0)$, $\mathbf{v}_2 = (-1,1)$ of eigenvectors of A. Then $\mathbf{v} = U\mathbf{w} \implies \mathbf{w} = U^{-1}\mathbf{v}$.

It follows that

$$\frac{d\mathbf{w}}{dt} = \frac{d}{dt}(U^{-1}\mathbf{v}) = U^{-1}\frac{d\mathbf{v}}{dt} = U^{-1}A\mathbf{v} = U^{-1}AU\mathbf{w}.$$

Hence
$$\frac{d\mathbf{w}}{dt} = B\mathbf{w} \iff \begin{cases} \frac{dw_1}{dt} = 4w_1, \\ \frac{dw_2}{dt} = w_2. \end{cases}$$

General solution: $w_1(t)=c_1e^{4t}, \ w_2(t)=c_2e^t, \ \text{where} \ c_1,c_2\in\mathbb{R}.$ Initial condition:

Initial condition:
$$\mathbf{w}(0) = U^{-1}\mathbf{v}(0) = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}^{-1} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}.$$

Thus $w_1(t) = 2e^{4t}$, $w_2(t) = e^t$. Then

$$\begin{pmatrix} x(t) \\ y(t) \end{pmatrix} = U\mathbf{w}(t) = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 2e^{4t} \\ e^t \end{pmatrix} = \begin{pmatrix} 2e^{4t} - e^t \\ e^t \end{pmatrix}.$$

There are **two obstructions** to existence of a basis consisting of eigenvectors. They are illustrated by the following examples.

Example 1.
$$A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$
.

 $\det(A - \lambda I) = (\lambda - 1)^2$. Hence $\lambda = 1$ is the only eigenvalue. The associated eigenspace is the line t(1,0).

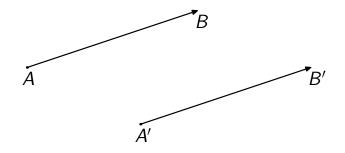
Example 2.
$$A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$
.

 $\det(A - \lambda I) = \lambda^2 + 1.$

⇒ no real eigenvalues or eigenvectors

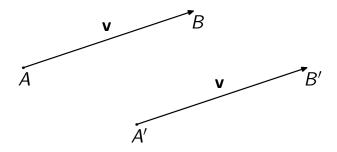
(However there are *complex* eigenvalues/eigenvectors.)

Classical vectors: geometric approach



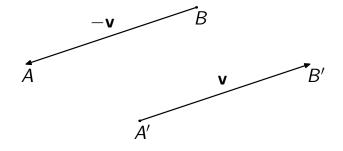
- A vector is represented by a directed segment.
- Directed segment is drawn as an arrow.
- Different arrows represent the same vector if they are of the same length and direction.

Classical vectors: geometric approach



 \overrightarrow{AB} denotes a vector represented by the arrow with tip (endpoint) at B and tail (beginning) at A. For any vector \mathbf{v} and a point A there is a unique point B such that $\overrightarrow{AB} = \mathbf{v}$.

Vectors: geometric approach



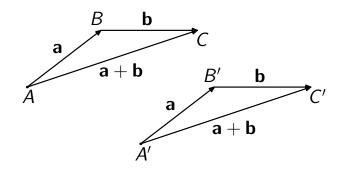
If $\mathbf{v} = \overrightarrow{AB}$ then \overrightarrow{BA} is called the *negative vector* of \mathbf{v} and denoted $-\mathbf{v}$.

 \overrightarrow{AA} is called the zero vector and denoted $\mathbf{0}$.

Linear structure: vector addition

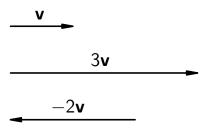
Given vectors \mathbf{a} and \mathbf{b} , their sum $\mathbf{a} + \mathbf{b}$ is defined by the rule $\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$.

That is, choose points A, B, C so that $\overrightarrow{AB} = \mathbf{a}$ and $\overrightarrow{BC} = \mathbf{b}$. Then $\mathbf{a} + \mathbf{b} = \overrightarrow{AC}$.



Linear structure: scalar multiplication

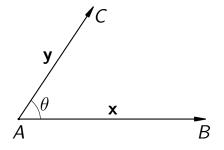
Let \mathbf{v} be a vector and $r \in \mathbb{R}$. By definition, $r\mathbf{v}$ is a vector whose magnitude is |r| times the magnitude of \mathbf{v} . The direction of $r\mathbf{v}$ coincides with that of \mathbf{v} if r > 0. If r < 0 then the directions of $r\mathbf{v}$ and \mathbf{v} are opposite.



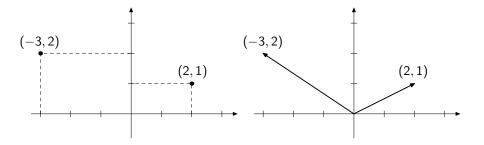
Beyond linearity: Euclidean structure

The Euclidean structure includes:

- length of a vector: |x|,
- ullet angle between vectors: heta,
- dot product: $\mathbf{x} \cdot \mathbf{y} = |\mathbf{x}| |\mathbf{y}| \cos \theta$.



Cartesian coordinates: geometric meets algebraic



Cartesian coordinates allow us to identify a line, a plane, and space with \mathbb{R} , \mathbb{R}^2 , and \mathbb{R}^3 , respectively.

Once we specify an *origin* O, each point A is associated a *position vector* \overrightarrow{OA} . Conversely, every vector has a unique representative with tail at O.

Length and distance

Definition. The **length** of a vector $\mathbf{v} = (v_1, v_2, \dots, v_n) \in \mathbb{R}^n$ is $\|\mathbf{v}\| = \sqrt{v_1^2 + v_2^2 + \dots + v_n^2}$.

The **distance** between vectors \mathbf{x} and \mathbf{y} is defined as $\|\mathbf{y} - \mathbf{x}\|$.

Properties of length:

$$\|\mathbf{x}\| \geq 0$$
, $\|\mathbf{x}\| = 0$ only if $\mathbf{x} = \mathbf{0}$ (positivity) $\|r\mathbf{x}\| = |r| \|\mathbf{x}\|$ (homogeneity) $\|\mathbf{x} + \mathbf{y}\| \leq \|\mathbf{x}\| + \|\mathbf{y}\|$ (triangle inequality)

Scalar product

Definition. The scalar product of vectors $\mathbf{x} = (x_1, x_2, \dots, x_n)$ and $\mathbf{y} = (y_1, y_2, \dots, y_n)$ is $\mathbf{x} \cdot \mathbf{y} = x_1 y_1 + x_2 y_2 + \dots + x_n y_n$.

Alternative notation: (\mathbf{x}, \mathbf{y}) or (\mathbf{x}, \mathbf{y}) .

Properties of scalar product:

$$\mathbf{x} \cdot \mathbf{x} \ge 0$$
, $\mathbf{x} \cdot \mathbf{x} = 0$ only if $\mathbf{x} = \mathbf{0}$ (positivity)
 $\mathbf{x} \cdot \mathbf{y} = \mathbf{y} \cdot \mathbf{x}$ (symmetry)
 $(\mathbf{x} + \mathbf{y}) \cdot \mathbf{z} = \mathbf{x} \cdot \mathbf{z} + \mathbf{y} \cdot \mathbf{z}$ (distributive law)
 $(r\mathbf{x}) \cdot \mathbf{y} = r(\mathbf{x} \cdot \mathbf{y})$ (homogeneity)

In particular, $\mathbf{x} \cdot \mathbf{y}$ is a **bilinear** function (i.e., it is both a linear function of \mathbf{x} and a linear function of \mathbf{y}).

Relations between lengths and scalar products:

$$\begin{split} \|\mathbf{x}\| &= \sqrt{\mathbf{x} \cdot \mathbf{x}} \\ |\mathbf{x} \cdot \mathbf{y}| &\leq \|\mathbf{x}\| \, \|\mathbf{y}\| \qquad \text{(Cauchy-Schwarz inequality)} \\ \|\mathbf{x} - \mathbf{y}\|^2 &= \|\mathbf{x}\|^2 + \|\mathbf{y}\|^2 - 2 \, \mathbf{x} \cdot \mathbf{y} \end{split}$$

By the Cauchy-Schwarz inequality, for any nonzero vectors $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ we have

$$\cos \theta = \frac{\mathbf{x} \cdot \mathbf{y}}{\|\mathbf{x}\| \|\mathbf{y}\|} \text{ for some } 0 \le \theta \le \pi.$$

 θ is called the **angle** between the vectors **x** and **y**. The vectors **x** and **y** are said to be **orthogonal** (denoted **x** \perp **y**) if **x** \cdot **y** = 0 (i.e., if θ = 90°).

Problem. Find the angle θ between vectors $\mathbf{x} = (2, -1)$ and $\mathbf{v} = (3, 1)$.

$$\mathbf{x} = (2, -1) \text{ and } \mathbf{y} = (3, 1).$$

$$\mathbf{x} \cdot \mathbf{y} = 5$$
, $\|\mathbf{x}\| = \sqrt{5}$, $\|\mathbf{y}\| = \sqrt{10}$.
 $\cos \theta = \frac{\mathbf{x} \cdot \mathbf{y}}{\|\mathbf{x}\| \|\mathbf{y}\|} = \frac{5}{\sqrt{5}\sqrt{10}} = \frac{1}{\sqrt{2}} \implies \theta = 45^{\circ}$

Problem. Find the angle
$$\phi$$
 between vectors $\mathbf{v}=(-2,1,3)$ and $\mathbf{w}=(4,5,1)$.

$$\mathbf{v} \cdot \mathbf{w} = 0 \implies \mathbf{v} \perp \mathbf{w} \implies \phi = 90^{\circ}$$