MATH 304 Linear Algebra

Lecture 32: Review for Test 2.

Topics for Test 2

Coordinates and linear transformations (Leon 3.5, 4.1–4.3)

- Coordinates relative to a basis
- Change of basis, transition matrix
- Linear transformations
- Matrix of a linear transformation
- Change of basis for a linear operator

Eigenvalues and eigenvectors (Leon 6.1, 6.3)

- Eigenvalues, eigenvectors, eigenspaces
- Characteristic polynomial
- Diagonalization

Orthogonality (Leon 5.1–5.3, 5.5–5.6)

- Orthogonal complement
- Orthogonal projection
- Least squares problems
- The Gram-Schmidt orthogonalization process

Sample problems for Test 2

Problem 1. Consider a linear operator $L : \mathbb{R}^3 \to \mathbb{R}^3$ given by $L(\mathbf{u}) = (\mathbf{u} \cdot \mathbf{v}_1)\mathbf{v}_2$, where $\mathbf{v}_1 = (1, 2, -1)$ and $\mathbf{v}_2 = (1, 2, 3)$. (i) Find a matrix M such that $L(\mathbf{u}) = M\mathbf{u}$ for any column vector $\mathbf{u} \in \mathbb{R}^3$. (ii) Find all eigenvalues and eigenvectors of L.

Problem 2. Let *V* be a subspace of $F(\mathbb{R})$ spanned by functions e^x and e^{-x} . Let *L* be a linear operator on *V* such that $\begin{pmatrix} 2 & -1 \\ -3 & 2 \end{pmatrix}$ is the matrix of *L* relative to the basis e^x , e^{-x} . Find the matrix of *L* relative to the basis $\cosh x = \frac{1}{2}(e^x + e^{-x})$, $\sinh x = \frac{1}{2}(e^x - e^{-x})$.

Problem 3. Let
$$A = \begin{pmatrix} 1 & 2 & 0 \\ 1 & 1 & 1 \\ 0 & 2 & 1 \end{pmatrix}$$
.

(i) Find all eigenvalues of the matrix A.
(ii) For each eigenvalue of A, find an associated eigenvector.
(iii) Is the matrix A diagonalizable? Explain.
(iv) Find all eigenvalues of the matrix A².

Problem 4. Find a linear polynomial which is the best least squares fit to the following data:

Problem 5. Let V be a subspace of \mathbb{R}^4 spanned by the vectors $\mathbf{x}_1 = (1, 1, 1, 1)$ and $\mathbf{x}_2 = (1, 0, 3, 0)$. (i) Find an orthonormal basis for V. (ii) Find an orthonormal basis for the orthogonal complement V^{\perp} .

Problem 6. Let $L: V \to W$ be a linear mapping of a finite-dimensional vector space V to a vector space W. Show that

 $\dim \operatorname{Range}(L) + \dim \ker(L) = \dim V.$

Problem 7. Prove that every subspace of \mathbb{R}^n is the solution set for some system of linear homogeneous equations in *n* variables.

Problem 1. Consider a linear operator $L : \mathbb{R}^3 \to \mathbb{R}^3$ given by $L(\mathbf{u}) = (\mathbf{u} \cdot \mathbf{v}_1)\mathbf{v}_2$, where $\mathbf{v}_1 = (1, 2, -1)$ and $\mathbf{v}_2 = (1, 2, 3)$.

(i) Find a matrix M such that $L(\mathbf{u}) = M\mathbf{u}$ for any column vector $\mathbf{u} \in \mathbb{R}^3$.

(ii) Find all eigenvalues and eigenvectors of L.

M is the matrix of the operator *L* relative to the standard basis $\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3$. Hence consecutive columns of *M* are vectors $L(\mathbf{e}_1), L(\mathbf{e}_2), L(\mathbf{e}_3)$. We obtain that $L(\mathbf{e}_1) = \mathbf{v}_2$, $L(\mathbf{e}_2) = 2\mathbf{v}_2$, $L(\mathbf{e}_3) = -\mathbf{v}_2$. Hence $M = \begin{pmatrix} 1 & 2 & -1 \\ 2 & 4 & -2 \\ 3 & 6 & -3 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} (1, 2, -1)$.

Since $L(\mathbf{u})$ is always parallel to \mathbf{v}_2 , it follows that L has two eigenspaces: the kernel, which is \mathbf{v}_1^{\perp} , and the line spanned by \mathbf{v}_2 . We have $L(\mathbf{v}_2) = 2\mathbf{v}_2$ so that the eigenvalues are 0 and 2.

Problem 2. Let V be a subspace of $F(\mathbb{R})$ spanned by functions e^x and e^{-x} . Let L be a linear operator on V such that $\begin{pmatrix} 2 & -1 \\ -3 & 2 \end{pmatrix}$ is the matrix of L relative to the basis e^x , e^{-x} . Find the matrix of L relative to the basis $\cosh x = \frac{1}{2}(e^x + e^{-x})$, $\sinh x = \frac{1}{2}(e^x - e^{-x})$.

Let A denote the matrix of the operator L relative to the basis e^x , e^{-x} (which is given) and B denote the matrix of L relative to the basis $\cosh x$, $\sinh x$ (which is to be found). By definition of the functions $\cosh x$ and $\sinh x$, the transition matrix from $\cosh x$, $\sinh x$ to e^x , e^{-x} is $U = \frac{1}{2} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$. It follows that $B = U^{-1}AU$. We obtain that

$$B = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 2 & -1 \\ -3 & 2 \end{pmatrix} \cdot \frac{1}{2} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} = \begin{pmatrix} 0 & -1 \\ 1 & 4 \end{pmatrix}$$

Problem 3. Let
$$A = \begin{pmatrix} 1 & 2 & 0 \\ 1 & 1 & 1 \\ 0 & 2 & 1 \end{pmatrix}$$
.

(i) Find all eigenvalues of the matrix A.

The eigenvalues of A are roots of the characteristic equation $det(A - \lambda I) = 0$. We obtain that

$$\det(A - \lambda I) = egin{bmatrix} 1 - \lambda & 2 & 0 \ 1 & 1 - \lambda & 1 \ 0 & 2 & 1 - \lambda \end{bmatrix}$$

$$=(1-\lambda)^3-2(1-\lambda)-2(1-\lambda)=(1-\lambda)((1-\lambda)^2-4)$$

$$=(1-\lambda)\big((1-\lambda)-2\big)\big((1-\lambda)+2\big)=-(\lambda-1)(\lambda+1)(\lambda-3).$$

Hence the matrix A has three eigenvalues: -1, 1, and 3.

Problem 3. Let
$$A = \begin{pmatrix} 1 & 2 & 0 \\ 1 & 1 & 1 \\ 0 & 2 & 1 \end{pmatrix}$$
.

(ii) For each eigenvalue of A, find an associated eigenvector.

An eigenvector $\mathbf{v} = (x, y, z)$ of the matrix A associated with an eigenvalue λ is a nonzero solution of the vector equation

$$(A-\lambda I)\mathbf{v} = \mathbf{0} \iff \begin{pmatrix} 1-\lambda & 2 & 0\\ 1 & 1-\lambda & 1\\ 0 & 2 & 1-\lambda \end{pmatrix} \begin{pmatrix} x\\ y\\ z \end{pmatrix} = \begin{pmatrix} 0\\ 0\\ 0 \end{pmatrix}.$$

To solve the equation, we convert the matrix $A - \lambda I$ to reduced row echelon form.

First consider the case $\lambda = -1$. The row reduction yields

$$A + I = \begin{pmatrix} 2 & 2 & 0 \\ 1 & 2 & 1 \\ 0 & 2 & 2 \end{pmatrix} \to \begin{pmatrix} 1 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 2 & 2 \end{pmatrix}$$
$$\to \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 2 & 2 \end{pmatrix} \to \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix} \to \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix}.$$

Hence

$$(A+I)\mathbf{v} = \mathbf{0} \quad \Longleftrightarrow \quad \begin{cases} x-z=0,\\ y+z=0. \end{cases}$$

The general solution is x = t, y = -t, z = t, where $t \in \mathbb{R}$. In particular, $\mathbf{v}_1 = (1, -1, 1)$ is an eigenvector of A associated with the eigenvalue -1. Secondly, consider the case $\lambda = 1$. The row reduction yields

$$A-I = \begin{pmatrix} 0 & 2 & 0 \\ 1 & 0 & 1 \\ 0 & 2 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 0 \\ 0 & 2 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 2 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

Hence

$$(A-I)\mathbf{v} = \mathbf{0} \quad \Longleftrightarrow \quad \begin{cases} x+z=0,\\ y=0. \end{cases}$$

The general solution is x = -t, y = 0, z = t, where $t \in \mathbb{R}$. In particular, $\mathbf{v}_2 = (-1, 0, 1)$ is an eigenvector of A associated with the eigenvalue 1. Finally, consider the case $\lambda = 3$. The row reduction yields

$$\begin{aligned} \mathcal{A} - 3I &= \begin{pmatrix} -2 & 2 & 0 \\ 1 & -2 & 1 \\ 0 & 2 & -2 \end{pmatrix} \to \begin{pmatrix} 1 & -1 & 0 \\ 1 & -2 & 1 \\ 0 & 2 & -2 \end{pmatrix} \to \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & 1 \\ 0 & 2 & -2 \end{pmatrix} \\ & \to \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ 0 & 2 & -2 \end{pmatrix} \to \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{pmatrix} \to \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{pmatrix}. \end{aligned}$$

Hence

$$(A-3I)\mathbf{v}=\mathbf{0} \quad \Longleftrightarrow \quad \begin{cases} x-z=0,\\ y-z=0. \end{cases}$$

The general solution is x = t, y = t, z = t, where $t \in \mathbb{R}$. In particular, $\mathbf{v}_3 = (1, 1, 1)$ is an eigenvector of A associated with the eigenvalue 3.

Problem 3. Let
$$A = \begin{pmatrix} 1 & 2 & 0 \\ 1 & 1 & 1 \\ 0 & 2 & 1 \end{pmatrix}$$
.

(iii) Is the matrix A diagonalizable? Explain.

The matrix A is diagonalizable, i.e., there exists a basis for \mathbb{R}^3 formed by its eigenvectors.

Namely, the vectors $\mathbf{v}_1 = (1, -1, 1)$, $\mathbf{v}_2 = (-1, 0, 1)$, and $\mathbf{v}_3 = (1, 1, 1)$ are eigenvectors of the matrix A belonging to distinct eigenvalues. Therefore these vectors are linearly independent. It follows that $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ is a basis for \mathbb{R}^3 .

Alternatively, the existence of a basis for \mathbb{R}^3 consisting of eigenvectors of A already follows from the fact that the matrix A has three distinct eigenvalues.

Problem 3. Let
$$A = \begin{pmatrix} 1 & 2 & 0 \\ 1 & 1 & 1 \\ 0 & 2 & 1 \end{pmatrix}$$
.

(iv) Find all eigenvalues of the matrix A^2 .

Suppose that **v** is an eigenvector of the matrix A associated with an eigenvalue λ , that is, **v** \neq **0** and A**v** = λ **v**. Then

$$A^2 \mathbf{v} = A(A \mathbf{v}) = A(\lambda \mathbf{v}) = \lambda(A \mathbf{v}) = \lambda(\lambda \mathbf{v}) = \lambda^2 \mathbf{v}.$$

Therefore **v** is also an eigenvector of the matrix A^2 and the associated eigenvalue is λ^2 . We already know that the matrix A has eigenvalues -1, 1, and 3. It follows that A^2 has eigenvalues 1 and 9.

Since a 3×3 matrix can have up to 3 eigenvalues, we need an additional argument to show that 1 and 9 are the only eigenvalues of A^2 . One reason is that the eigenvalue 1 has multiplicity 2.

Problem 4. Find a linear polynomial which is the best least squares fit to the following data:

We are looking for a function $f(x) = c_1 + c_2 x$, where c_1, c_2 are unknown coefficients. The data of the problem give rise to an overdetermined system of linear equations in variables c_1 and c_2 :

$$\begin{cases} c_1 - 2c_2 = -3, \\ c_1 - c_2 = -2, \\ c_1 = 1, \\ c_1 + c_2 = 2, \\ c_1 + 2c_2 = 5. \end{cases}$$

This system is inconsistent.

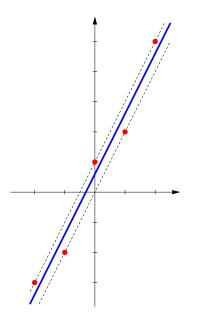
We can represent the system as a matrix equation $A\mathbf{c} = \mathbf{y}$, where

$$A = \begin{pmatrix} 1 & -2 \\ 1 & -1 \\ 1 & 0 \\ 1 & 1 \\ 1 & 2 \end{pmatrix}, \quad \mathbf{c} = \begin{pmatrix} c_1 \\ c_2 \end{pmatrix}, \quad \mathbf{y} = \begin{pmatrix} -3 \\ -2 \\ 1 \\ 2 \\ 5 \end{pmatrix}.$$

The least squares solution \mathbf{c} of the above system is a solution of the normal system $A^T A \mathbf{c} = A^T \mathbf{y}$:

$$\begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ -2 & -1 & 0 & 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & -2 \\ 1 & -1 \\ 1 & 0 \\ 1 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ -2 & -1 & 0 & 1 & 2 \end{pmatrix} \begin{pmatrix} -3 \\ -2 \\ 1 \\ 2 \\ 5 \end{pmatrix}$$
$$\iff \quad \begin{pmatrix} 5 & 0 \\ 0 & 10 \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} = \begin{pmatrix} 3 \\ 20 \end{pmatrix} \quad \Longleftrightarrow \quad \begin{cases} c_1 = 3/5 \\ c_2 = 2 \end{cases}$$

Thus the function $f(x) = \frac{3}{5} + 2x$ is the best least squares fit to the above data among linear polynomials.



Problem 5. Let V be a subspace of \mathbb{R}^4 spanned by the vectors $\mathbf{x}_1 = (1, 1, 1, 1)$ and $\mathbf{x}_2 = (1, 0, 3, 0)$. (i) Find an orthonormal basis for V.

First we apply the Gram-Schmidt orthogonalization process to vectors $\mathbf{x}_1, \mathbf{x}_2$ and obtain an orthogonal basis $\mathbf{v}_1, \mathbf{v}_2$ for the subspace V:

$$\begin{aligned} \mathbf{v}_1 &= \mathbf{x}_1 = (1, 1, 1, 1), \\ \mathbf{v}_2 &= \mathbf{x}_2 - \frac{\mathbf{x}_2 \cdot \mathbf{v}_1}{\mathbf{v}_1 \cdot \mathbf{v}_1} \mathbf{v}_1 = (1, 0, 3, 0) - \frac{4}{4}(1, 1, 1, 1) = (0, -1, 2, -1). \end{aligned}$$

Then we normalize vectors $\mathbf{v}_1, \mathbf{v}_2$ to obtain an orthonormal basis $\mathbf{w}_1, \mathbf{w}_2$ for V:

$$\|\mathbf{v}_1\| = 2 \implies \mathbf{w}_1 = \frac{\mathbf{v}_1}{\|\mathbf{v}_1\|} = \frac{1}{2}(1, 1, 1, 1)$$
$$\|\mathbf{v}_2\| = \sqrt{6} \implies \mathbf{w}_2 = \frac{\mathbf{v}_2}{\|\mathbf{v}_2\|} = \frac{1}{\sqrt{6}}(0, -1, 2, -1)$$

Problem 5. Let V be a subspace of \mathbb{R}^4 spanned by the vectors $\mathbf{x}_1 = (1, 1, 1, 1)$ and $\mathbf{x}_2 = (1, 0, 3, 0)$. (ii) Find an orthonormal basis for the orthogonal complement V^{\perp} .

Since the subspace V is spanned by vectors (1, 1, 1, 1) and (1, 0, 3, 0), it is the row space of the matrix

$$A = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 0 & 3 & 0 \end{pmatrix}.$$

Then the orthogonal complement V^{\perp} is the nullspace of A. To find the nullspace, we convert the matrix A to reduced row echelon form:

$$\begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 0 & 3 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 3 & 0 \\ 1 & 1 & 1 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 3 & 0 \\ 0 & 1 & -2 & 1 \end{pmatrix}.$$

Hence a vector $(x_1, x_2, x_3, x_4) \in \mathbb{R}^4$ belongs to V^{\perp} if and only if

$$\begin{pmatrix} 1 & 0 & 3 & 0 \\ 0 & 1 & -2 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
$$\iff \begin{cases} x_1 + 3x_3 = 0 \\ x_2 - 2x_3 + x_4 = 0 \end{cases} \iff \begin{cases} x_1 = -3x_3 \\ x_2 = 2x_3 - x_4 \end{cases}$$

The general solution of the system is $(x_1, x_2, x_3, x_4) = (-3t, 2t - s, t, s) = t(-3, 2, 1, 0) + s(0, -1, 0, 1)$, where $t, s \in \mathbb{R}$.

It follows that V^{\perp} is spanned by vectors $\mathbf{x}_3 = (0, -1, 0, 1)$ and $\mathbf{x}_4 = (-3, 2, 1, 0)$. The vectors $\mathbf{x}_3 = (0, -1, 0, 1)$ and $\mathbf{x}_4 = (-3, 2, 1, 0)$ form a basis for the subspace V^{\perp} .

It remains to orthogonalize and normalize this basis:

$$\begin{split} \mathbf{v}_3 &= \mathbf{x}_3 = (0, -1, 0, 1), \\ \mathbf{v}_4 &= \mathbf{x}_4 - \frac{\mathbf{x}_4 \cdot \mathbf{v}_3}{\mathbf{v}_3 \cdot \mathbf{v}_3} \mathbf{v}_3 = (-3, 2, 1, 0) - \frac{-2}{2} (0, -1, 0, 1) \\ &= (-3, 1, 1, 1), \\ \|\mathbf{v}_3\| &= \sqrt{2} \implies \mathbf{w}_3 = \frac{\mathbf{v}_3}{\|\mathbf{v}_3\|} = \frac{1}{\sqrt{2}} (0, -1, 0, 1), \\ \|\mathbf{v}_4\| &= \sqrt{12} = 2\sqrt{3} \implies \mathbf{w}_4 = \frac{\mathbf{v}_4}{\|\mathbf{v}_4\|} = \frac{1}{2\sqrt{3}} (-3, 1, 1, 1). \end{split}$$

Thus the vectors $\mathbf{w}_3 = \frac{1}{\sqrt{2}}(0, -1, 0, 1)$ and $\mathbf{w}_4 = \frac{1}{2\sqrt{3}}(-3, 1, 1, 1)$ form an orthonormal basis for V^{\perp} .

Problem 5. Let V be a subspace of \mathbb{R}^4 spanned by the vectors $\mathbf{x}_1 = (1, 1, 1, 1)$ and $\mathbf{x}_2 = (1, 0, 3, 0)$. (i) Find an orthonormal basis for V. (ii) Find an orthonormal basis for the orthogonal complement V^{\perp} .

Alternative solution: First we extend the set $\mathbf{x}_1, \mathbf{x}_2$ to a basis $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \mathbf{x}_4$ for \mathbb{R}^4 . Then we orthogonalize and normalize the latter. This yields an orthonormal basis $\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3, \mathbf{w}_4$ for \mathbb{R}^4 .

By construction, $\mathbf{w}_1, \mathbf{w}_2$ is an orthonormal basis for V. It follows that $\mathbf{w}_3, \mathbf{w}_4$ is an orthonormal basis for V^{\perp} . The set $\mathbf{x}_1 = (1, 1, 1, 1)$, $\mathbf{x}_2 = (1, 0, 3, 0)$ can be extended to a basis for \mathbb{R}^4 by adding two vectors from the standard basis.

For example, we can add vectors $\mathbf{e}_3 = (0, 0, 1, 0)$ and $\mathbf{e}_4 = (0, 0, 0, 1)$. To show that $\mathbf{x}_1, \mathbf{x}_2, \mathbf{e}_3, \mathbf{e}_4$ is indeed a basis for \mathbb{R}^4 , we check that the matrix whose rows are these vectors is nonsingular:

$$egin{array}{cccccc} 1 & 1 & 1 & 1 \ 1 & 0 & 3 & 0 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \ \end{array} = - egin{array}{ccccccccccccccccc} 1 & 3 & 0 \ 0 & 1 & 0 \ 0 & 1 & 0 \ 0 & 0 & 1 \ \end{array} = -1
eq 0.$$

To orthogonalize the basis $\mathbf{x}_1, \mathbf{x}_2, \mathbf{e}_3, \mathbf{e}_4$, we apply the Gram-Schmidt process:

$$\mathbf{v}_1 = \mathbf{x}_1 = (1, 1, 1, 1),$$

 $\mathbf{v}_2 = \mathbf{x}_2 - \frac{\mathbf{x}_2 \cdot \mathbf{v}_1}{\mathbf{v}_1 \cdot \mathbf{v}_1} \mathbf{v}_1 = (1, 0, 3, 0) - \frac{4}{4}(1, 1, 1, 1) = (0, -1, 2, -1),$

$$\mathbf{v}_3 = \mathbf{e}_3 - \frac{\mathbf{e}_3 \cdot \mathbf{v}_1}{\mathbf{v}_1 \cdot \mathbf{v}_1} \mathbf{v}_1 - \frac{\mathbf{e}_3 \cdot \mathbf{v}_2}{\mathbf{v}_2 \cdot \mathbf{v}_2} \mathbf{v}_2 = (0, 0, 1, 0) - \frac{1}{4} (1, 1, 1, 1) - \frac{2}{6} (0, -1, 2, -1) = \left(-\frac{1}{4}, \frac{1}{12}, \frac{1}{12}, \frac{1}{12}\right) = \frac{1}{12} (-3, 1, 1, 1),$$

$$\begin{aligned} \mathbf{v}_4 &= \mathbf{e}_4 - \frac{\mathbf{e}_4 \cdot \mathbf{v}_1}{\mathbf{v}_1 \cdot \mathbf{v}_1} \mathbf{v}_1 - \frac{\mathbf{e}_4 \cdot \mathbf{v}_2}{\mathbf{v}_2 \cdot \mathbf{v}_2} \mathbf{v}_2 - \frac{\mathbf{e}_4 \cdot \mathbf{v}_3}{\mathbf{v}_3 \cdot \mathbf{v}_3} \mathbf{v}_3 &= (0, 0, 0, 1) - \\ &- \frac{1}{4} (1, 1, 1, 1) - \frac{-1}{6} (0, -1, 2, -1) - \frac{1/12}{1/12} \cdot \frac{1}{12} (-3, 1, 1, 1) = \\ &= (0, -\frac{1}{2}, 0, \frac{1}{2}) = \frac{1}{2} (0, -1, 0, 1). \end{aligned}$$

It remains to normalize vectors $\mathbf{v}_1 = (1, 1, 1, 1)$, $\mathbf{v}_2 = (0, -1, 2, -1), \ \mathbf{v}_3 = \frac{1}{12}(-3, 1, 1, 1), \ \mathbf{v}_4 = \frac{1}{2}(0, -1, 0, 1)$ $\|\mathbf{v}_1\| = 2 \implies \mathbf{w}_1 = \frac{\mathbf{v}_1}{\|\mathbf{v}_1\|} = \frac{1}{2}(1, 1, 1, 1)$ $\|\mathbf{v}_2\| = \sqrt{6} \implies \mathbf{w}_2 = \frac{\mathbf{v}_2}{\|\mathbf{v}_2\|} = \frac{1}{\sqrt{6}}(0, -1, 2, -1)$ $\|\mathbf{v}_3\| = \frac{1}{\sqrt{12}} = \frac{1}{2\sqrt{3}} \implies \mathbf{w}_3 = \frac{\mathbf{v}_3}{\|\mathbf{v}_3\|} = \frac{1}{2\sqrt{3}}(-3, 1, 1, 1)$ $\|\mathbf{v}_4\| = \frac{1}{\sqrt{2}} \implies \mathbf{w}_4 = \frac{\mathbf{v}_4}{\|\mathbf{v}_4\|} = \frac{1}{\sqrt{2}}(0, -1, 0, 1)$

Thus $\mathbf{w}_1, \mathbf{w}_2$ is an orthonormal basis for V while $\mathbf{w}_3, \mathbf{w}_4$ is an orthonormal basis for V^{\perp} .

Thus for any vector $\mathbf{y} \in \mathbb{R}^4$ the orthogonal projection of \mathbf{y} onto the subspace V is

$$\mathbf{p} = (\mathbf{y} \cdot \mathbf{w}_1)\mathbf{w}_1 + (\mathbf{y} \cdot \mathbf{w}_2)\mathbf{w}_2$$

and the orthogonal projection of **y** onto V^{\perp} is

$$\mathbf{o} = (\mathbf{y} \cdot \mathbf{w}_3)\mathbf{w}_3 + (\mathbf{y} \cdot \mathbf{w}_4)\mathbf{w}_4$$

Also, the distance from **y** to *V* is $\|\mathbf{y} - \mathbf{p}\| = \|\mathbf{o}\|$ and the distance from **y** to V^{\perp} is $\|\mathbf{y} - \mathbf{o}\| = \|\mathbf{p}\|$. **Problem 6.** Let $L: V \to W$ be a linear mapping of a finite-dimensional vector space V to a vector space W. Show that dim Range(L) + dim ker(L) = dim V.

The kernel ker(L) is a subspace of V. It is finite-dimensional since the vector space V is.

Take a basis $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ for the subspace ker(*L*), then extend it to a basis $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k, \mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_m$ for the entire space *V*.

Claim Vectors $L(\mathbf{u}_1), L(\mathbf{u}_2), \ldots, L(\mathbf{u}_m)$ form a basis for the range of *L*.

Assuming the claim is proved, we obtain

dim Range(L) = m, dim ker(L) = k, dim V = k + m.

Claim Vectors $L(\mathbf{u}_1), L(\mathbf{u}_2), \ldots, L(\mathbf{u}_m)$ form a basis for the range of *L*.

Proof (spanning): Any vector $\mathbf{w} \in \text{Range}(L)$ is represented as $\mathbf{w} = L(\mathbf{v})$, where $\mathbf{v} \in V$. Then

$$\mathbf{v} = \alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \dots + \alpha_k \mathbf{v}_k + \beta_1 \mathbf{u}_1 + \beta_2 \mathbf{u}_2 + \dots + \beta_m \mathbf{u}_m$$

for some $\alpha_i, \beta_j \in \mathbb{R}$. It follows that

$$\mathbf{w} = L(\mathbf{v}) = \alpha_1 L(\mathbf{v}_1) + \dots + \alpha_k L(\mathbf{v}_k) + \beta_1 L(\mathbf{u}_1) + \dots + \beta_m L(\mathbf{u}_m)$$
$$= \beta_1 L(\mathbf{u}_1) + \dots + \beta_m L(\mathbf{u}_m).$$

Note that $L(\mathbf{v}_i) = \mathbf{0}$ since $\mathbf{v}_i \in \ker(L)$. Thus $\operatorname{Range}(L)$ is spanned by the vectors $L(\mathbf{u}_1), \ldots, L(\mathbf{u}_m)$. **Claim** Vectors $L(\mathbf{u}_1), L(\mathbf{u}_2), \ldots, L(\mathbf{u}_m)$ form a basis for the range of *L*.

Proof (linear independence): Suppose that
$$t_1L(\mathbf{u}_1) + t_2L(\mathbf{u}_2) + \cdots + t_mL(\mathbf{u}_m) = \mathbf{0}$$

for some $t_i \in \mathbb{R}$. Let $\mathbf{u} = t_1 \mathbf{u}_1 + t_2 \mathbf{u}_2 + \cdots + t_m \mathbf{u}_m$. Since

$$L(\mathbf{u}) = t_1 L(\mathbf{u}_1) + t_2 L(\mathbf{u}_2) + \cdots + t_m L(\mathbf{u}_m) = \mathbf{0}$$

the vector **u** belongs to the kernel of *L*. Therefore $\mathbf{u} = s_1 \mathbf{v}_1 + s_2 \mathbf{v}_2 + \cdots + s_k \mathbf{v}_k$ for some $s_j \in \mathbb{R}$. It follows that

$$t_1\mathbf{u}_1+t_2\mathbf{u}_2+\cdots+t_m\mathbf{u}_m-s_1\mathbf{v}_1-s_2\mathbf{v}_2-\cdots-s_k\mathbf{v}_k=\mathbf{u}-\mathbf{u}=\mathbf{0}.$$

Linear independence of vectors $\mathbf{v}_1, \ldots, \mathbf{v}_k, \mathbf{u}_1, \ldots, \mathbf{u}_m$ implies that $t_1 = \cdots = t_m = 0$ (as well as $s_1 = \cdots = s_k = 0$). Thus the vectors $L(\mathbf{u}_1), L(\mathbf{u}_2), \ldots, L(\mathbf{u}_m)$ are linearly independent. **Problem 7.** Prove that every subspace of \mathbb{R}^n is the solution set for some system of linear homogeneous equations in *n* variables.

The proof is based on 3 observations:

(1) the solution set for a system of linear homogeneous equations is the nullspace of the coefficient matrix;
(2) for any matrix, {nullspace} = {row space}[⊥];
(3) any subspace of ℝⁿ can be represented as the row space of some matrix.

Now, given a subspace $V \subset \mathbb{R}^n$, let $W = V^{\perp}$. By the above, there exists a matrix A such that $W = \{$ row space of $A \}$. Then $V = W^{\perp} = \{$ nullspace of $A \}$.