MATH 304
Linear Algebra

Lecture 34a:
Orthogonality in inner product spaces.



Orthogonal sets

Let V be an inner product space with an inner
product (-,-) and the induced norm ||v|| = /(v, V).

Definition. A nonempty set S C V' of nonzero
vectors is called an orthogonal set if all vectors in
S are mutually orthogonal. Thatis, 0 ¢ S and
(x,y) =0 forany x,y € S, x #y.

An orthogonal set S C V s called orthonormal if
||| =1 for any x € S.

Remark. Vectors vi,vy,...,v, € V form an
orthonormal set if and only if

(1 if =],
<"”"J>_{0 if i),



Example

o V=Cl-ma] (fg)= / " F(x)g(x) dx.

fi(x) =sinx, f(x) =sin2x, ..., fo(x) =sinnx, ...

T m if m=
(T ) :/_ sin(mx) sin(nx) dx = { 0 i :#Z’

Thus the set {fi, h, f5,...} is orthogonal but not
orthonormal.

It is orthonormal with respect to a scaled inner
product

(f.g) = %/W f(x)g(x) dx.

—T



Orthogonality —> linear independence

Theorem Suppose vi,Vy, ...,V are nonzero
vectors that form an orthogonal set. Then
V1,Vo, ...,V are linearly independent.

Proof: Suppose tivi+ thovy + -+ teve =0
for some t, ty, ..., tx € R.

Then for any index 1 </ < k we have

<t1v1 + vy + - - - + Ly, Vi> = <0, Vi> = 0.
—> ti{vi, V) + to(vo, Vi) + -+ (Vi vp) = 0
By orthogonality, t{v;,v;) =0 = t; =0.



Orthonormal basis

Suppose vi,V»,...,Vv, is an orthonormal basis for
an inner product space V.

Theorem 1 Let x = x;vy + xovp + - - - + x,v,, and
Y = yiV1 + yoVo + - - - + ypv,, where x;, y; € R.
Then

(') <X, Y> = X1y1 + Xoy2 + -+ + XpYn,

@) [l = /oF G+t

Theorem 2 For any vector x € V,

x = (x,v)vi + (X, vo)vp + - - - + (X, V)V,



Orthogonal projection

Theorem Let V be an inner product space and V; be a
finite-dimensional subspace of V. Then any vector x € V' is
uniquely represented as x = p + o, where p € V4 and

ol Vo.

The component p is called the orthogonal projection of the
vector x onto the subspace V.

Vo

The projection p is closer to x than any other vector in V.
Hence the distance from x to V4 is ||x — p|| = ||o]|.



Theorem Let V be an inner product space and V
be a finite-dimensional subspace of V. Then any
vector x € V' is uniquely represented as x = p + o,
where p € Vp and o L V.

Theorem Suppose vi,vy, ..., Vv, is an orthogonal
basis for the subspace V{. Then for any vector
x € V the orthogonal projection p onto Vj is given

Vn-



The Gram-Schmidt orthogonalization process

Let V be a vector space with an inner product.

Suppose Xi,X»,...,X, is a basis for V. Let
Vi = Xy,
Vo = Xy — <X2, V1>V11
(v1,v1)
V3 = X3 — (x3, V1>V1 _ <X3,V2>v2'
<V1, V]_> <V2,V2>
vy, o) KeVer)
(v1,v1) (Vn-1,Vn-1)

Then vy,vy, ..., v, is an orthogonal basis for V.



Normalization

Let V be a vector space with an inner product.

Suppose vi,V»,...,V, is an orthogonal basis for V.
V) Vp
Let w; = Wy = ——— W, = .
[va [v2] [[vall
Then wy,ws,...,w, is an orthonormal basis for V.

Theorem Any finite-dimensional vector space with
an inner product has an orthonormal basis.

Remark. An infinite-dimensional vector space with
an inner product may or may not have an
orthonormal basis.



Problem. Approximate the function f(x) = e*
on the interval [—1,1] by a quadratic polynomial.

The best approximation would be a polynomial p(x)
that minimizes the distance relative to the uniform
nhorm:

If = Plloc = max [f(x) — p(x)].

|x|<1

However there is no analytic way to find such a
polynomial. Instead, one can find a “least
squares” approximation that minimizes the integral
norm

I el = ( [ ()~ pLoP o) 7



The norm || - ||2 is induced by the inner product

(g, h) = /_ g(x)h(x) dx.

1

Therefore ||f — p||2 is minimal if p is the
orthogonal projection of the function f on the
subspace P3; of quadratic polynomials.

We should apply the Gram-Schmidt process to the
polynomials 1, x, x?, which form a basis for Ps.
This would yleld an orthogonal basis pg, p1, ps.
Then
(f, po) {f, p1) (f. p2)
X X) + p1(x) + P2(Xx).
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