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Lecture 34a:
Orthogonality in inner product spaces.



Orthogonal sets

Let V be an inner product space with an inner

product 〈·, ·〉 and the induced norm ‖v‖ =
√

〈v, v〉.

Definition. A nonempty set S ⊂ V of nonzero

vectors is called an orthogonal set if all vectors in
S are mutually orthogonal. That is, 0 /∈ S and
〈x, y〉 = 0 for any x, y ∈ S , x 6= y.

An orthogonal set S ⊂ V is called orthonormal if
‖x‖ = 1 for any x ∈ S .

Remark. Vectors v1, v2, . . . , vk ∈ V form an

orthonormal set if and only if

〈vi , vj〉 =

{

1 if i = j ,
0 if i 6= j .



Example

• V = C [−π, π], 〈f , g〉 =

∫ π

−π

f (x)g(x) dx .

f1(x) = sin x , f2(x) = sin 2x , . . . , fn(x) = sin nx , . . .

〈fm, fn〉 =

∫

π

−π

sin(mx) sin(nx) dx =

{

π if m = n,

0 if m 6= n.

Thus the set {f1, f2, f3, . . . } is orthogonal but not
orthonormal.

It is orthonormal with respect to a scaled inner

product

〈〈f , g〉〉 =
1

π

∫ π

−π

f (x)g(x) dx .



Orthogonality =⇒ linear independence

Theorem Suppose v1, v2, . . . , vk are nonzero
vectors that form an orthogonal set. Then

v1, v2, . . . , vk are linearly independent.

Proof: Suppose t1v1 + t2v2 + · · ·+ tkvk = 0
for some t1, t2, . . . , tk ∈ R.

Then for any index 1 ≤ i ≤ k we have

〈t1v1 + t2v2 + · · ·+ tkvk , vi〉 = 〈0, vi〉 = 0.

=⇒ t1〈v1, vi〉 + t2〈v2, vi〉+ · · ·+ tk〈vk , vi〉 = 0

By orthogonality, ti〈vi , vi〉 = 0 =⇒ ti = 0.



Orthonormal basis

Suppose v1, v2, . . . , vn is an orthonormal basis for
an inner product space V .

Theorem 1 Let x = x1v1 + x2v2 + · · ·+ xnvn and

y = y1v1 + y2v2 + · · ·+ ynvn, where xi , yj ∈ R.
Then
(i) 〈x, y〉 = x1y1 + x2y2 + · · ·+ xnyn,

(ii) ‖x‖ =
√

x2
1
+ x2

2
+ · · ·+ x2n .

Theorem 2 For any vector x ∈ V ,

x = 〈x, v1〉v1 + 〈x, v2〉v2 + · · ·+ 〈x, vn〉vn.



Orthogonal projection

Theorem Let V be an inner product space and V0 be a
finite-dimensional subspace of V . Then any vector x ∈ V is
uniquely represented as x = p+ o, where p ∈ V0 and
o ⊥ V0.

The component p is called the orthogonal projection of the
vector x onto the subspace V0.

V0

o

p

x

The projection p is closer to x than any other vector in V0.
Hence the distance from x to V0 is ‖x− p‖ = ‖o‖.



Theorem Let V be an inner product space and V0

be a finite-dimensional subspace of V . Then any

vector x ∈ V is uniquely represented as x = p+ o,
where p ∈ V0 and o ⊥ V0.

Theorem Suppose v1, v2, . . . , vn is an orthogonal
basis for the subspace V0. Then for any vector

x ∈ V the orthogonal projection p onto V0 is given
by

p =
〈x, v1〉

〈v1, v1〉
v1 +

〈x, v2〉

〈v2, v2〉
v2 + · · ·+

〈x, vn〉

〈vn, vn〉
vn.



The Gram-Schmidt orthogonalization process

Let V be a vector space with an inner product.

Suppose x1, x2, . . . , xn is a basis for V . Let

v1 = x1,

v2 = x2 −
〈x2, v1〉

〈v1, v1〉
v1,

v3 = x3 −
〈x3, v1〉

〈v1, v1〉
v1 −

〈x3, v2〉

〈v2, v2〉
v2,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

vn = xn −
〈xn, v1〉

〈v1, v1〉
v1 − · · · −

〈xn, vn−1〉

〈vn−1, vn−1〉
vn−1.

Then v1, v2, . . . , vn is an orthogonal basis for V .



Normalization

Let V be a vector space with an inner product.
Suppose v1, v2, . . . , vn is an orthogonal basis for V .

Let w1 =
v1

‖v1‖
, w2 =

v2
‖v2‖

,. . . , wn =
vn

‖vn‖
.

Then w1,w2, . . . ,wn is an orthonormal basis for V .

Theorem Any finite-dimensional vector space with

an inner product has an orthonormal basis.

Remark. An infinite-dimensional vector space with
an inner product may or may not have an

orthonormal basis.



Problem. Approximate the function f (x) = ex

on the interval [−1, 1] by a quadratic polynomial.

The best approximation would be a polynomial p(x)
that minimizes the distance relative to the uniform

norm:
‖f − p‖∞ = max

|x |≤1

|f (x)− p(x)|.

However there is no analytic way to find such a

polynomial. Instead, one can find a “least
squares” approximation that minimizes the integral
norm

‖f − p‖2 =

(
∫

1

−1

|f (x)− p(x)|2 dx

)1/2

.



The norm ‖ · ‖2 is induced by the inner product

〈g , h〉 =

∫

1

−1

g(x)h(x) dx .

Therefore ‖f − p‖2 is minimal if p is the

orthogonal projection of the function f on the
subspace P3 of quadratic polynomials.

We should apply the Gram-Schmidt process to the

polynomials 1, x , x2, which form a basis for P3.
This would yield an orthogonal basis p0, p1, p2.

Then

p(x) =
〈f , p0〉

〈p0, p0〉
p0(x) +

〈f , p1〉

〈p1, p1〉
p1(x) +

〈f , p2〉

〈p2, p2〉
p2(x).


