MATH 304 Linear Algebra

Lecture 34a: Orthogonality in inner product spaces.

Orthogonal sets

Let V be an inner product space with an inner product $\langle \cdot, \cdot \rangle$ and the induced norm $\|\mathbf{v}\| = \sqrt{\langle \mathbf{v}, \mathbf{v} \rangle}$. *Definition.* A nonempty set $S \subset V$ of nonzero vectors is called an orthogonal set if all vectors in S are mutually orthogonal. That is, $\mathbf{0} \notin S$ and $\langle \mathbf{x}, \mathbf{y} \rangle = 0$ for any $\mathbf{x}, \mathbf{y} \in S$, $\mathbf{x} \neq \mathbf{y}$. An orthogonal set $S \subset V$ is called **orthonormal** if $\|\mathbf{x}\| = 1$ for any $\mathbf{x} \in S$.

Remark. Vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k \in V$ form an orthonormal set if and only if

$$\langle \mathbf{v}_i, \mathbf{v}_j \rangle = \begin{cases} 1 & \text{if } i = j, \\ 0 & \text{if } i \neq j. \end{cases}$$

Example

•
$$V = C[-\pi, \pi], \ \langle f, g \rangle = \int_{-\pi}^{\pi} f(x)g(x) \, dx.$$

 $f_1(x) = \sin x, \ f_2(x) = \sin 2x, \dots, \ f_n(x) = \sin nx, \dots$

$$\langle f_m, f_n \rangle = \int_{-\pi}^{\pi} \sin(mx) \sin(nx) \, dx = \begin{cases} \pi & \text{if } m = n, \\ 0 & \text{if } m \neq n. \end{cases}$$

Thus the set $\{f_1, f_2, f_3, ...\}$ is orthogonal but not orthonormal.

It is orthonormal with respect to a scaled inner product

$$\langle\!\langle f,g\rangle\!\rangle = \frac{1}{\pi}\int_{-\pi}^{\pi}f(x)g(x)\,dx.$$

Orthogonality \implies **linear independence**

Theorem Suppose $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ are nonzero vectors that form an orthogonal set. Then $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ are linearly independent.

Proof: Suppose $t_1\mathbf{v}_1 + t_2\mathbf{v}_2 + \cdots + t_k\mathbf{v}_k = \mathbf{0}$ for some $t_1, t_2, \ldots, t_k \in \mathbb{R}$.

Then for any index $1 \le i \le k$ we have

Orthonormal basis

Suppose $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ is an orthonormal basis for an inner product space V.

Theorem 1 Let $\mathbf{x} = x_1\mathbf{v}_1 + x_2\mathbf{v}_2 + \cdots + x_n\mathbf{v}_n$ and $\mathbf{y} = y_1\mathbf{v}_1 + y_2\mathbf{v}_2 + \cdots + y_n\mathbf{v}_n$, where $x_i, y_j \in \mathbb{R}$. Then

(i)
$$\langle \mathbf{x}, \mathbf{y} \rangle = x_1 y_1 + x_2 y_2 + \dots + x_n y_n$$

(ii) $\|\mathbf{x}\| = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}.$

Theorem 2 For any vector $\mathbf{x} \in V$,

$$\mathbf{x} = \langle \mathbf{x}, \mathbf{v}_1 \rangle \mathbf{v}_1 + \langle \mathbf{x}, \mathbf{v}_2 \rangle \mathbf{v}_2 + \cdots + \langle \mathbf{x}, \mathbf{v}_n \rangle \mathbf{v}_n.$$

Orthogonal projection

Theorem Let *V* be an inner product space and V_0 be a finite-dimensional subspace of *V*. Then any vector $\mathbf{x} \in V$ is uniquely represented as $\mathbf{x} = \mathbf{p} + \mathbf{o}$, where $\mathbf{p} \in V_0$ and $\mathbf{o} \perp V_0$.

The component **p** is called the **orthogonal projection** of the vector **x** onto the subspace V_0 .

The projection **p** is closer to **x** than any other vector in V_0 . Hence the distance from **x** to V_0 is $||\mathbf{x} - \mathbf{p}|| = ||\mathbf{o}||$. **Theorem** Let V be an inner product space and V_0 be a finite-dimensional subspace of V. Then any vector $\mathbf{x} \in V$ is uniquely represented as $\mathbf{x} = \mathbf{p} + \mathbf{o}$, where $\mathbf{p} \in V_0$ and $\mathbf{o} \perp V_0$.

Theorem Suppose $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n$ is an orthogonal basis for the subspace V_0 . Then for any vector $\mathbf{x} \in V$ the orthogonal projection \mathbf{p} onto V_0 is given by

$$\mathbf{p} = \frac{\langle \mathbf{x}, \mathbf{v}_1 \rangle}{\langle \mathbf{v}_1, \mathbf{v}_1 \rangle} \mathbf{v}_1 + \frac{\langle \mathbf{x}, \mathbf{v}_2 \rangle}{\langle \mathbf{v}_2, \mathbf{v}_2 \rangle} \mathbf{v}_2 + \dots + \frac{\langle \mathbf{x}, \mathbf{v}_n \rangle}{\langle \mathbf{v}_n, \mathbf{v}_n \rangle} \mathbf{v}_n.$$

The Gram-Schmidt orthogonalization process

Let V be a vector space with an inner product. Suppose $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n$ is a basis for V. Let

Then $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n$ is an orthogonal basis for V.

Normalization

Let V be a vector space with an inner product. Suppose $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ is an orthogonal basis for V.

Let
$$\mathbf{w}_1 = \frac{\mathbf{v}_1}{\|\mathbf{v}_1\|}$$
, $\mathbf{w}_2 = \frac{\mathbf{v}_2}{\|\mathbf{v}_2\|}$,..., $\mathbf{w}_n = \frac{\mathbf{v}_n}{\|\mathbf{v}_n\|}$.

Then $\mathbf{w}_1, \mathbf{w}_2, \ldots, \mathbf{w}_n$ is an orthonormal basis for V.

Theorem Any finite-dimensional vector space with an inner product has an orthonormal basis.

Remark. An infinite-dimensional vector space with an inner product may or may not have an orthonormal basis.

Problem. Approximate the function $f(x) = e^x$ on the interval [-1, 1] by a quadratic polynomial.

The best approximation would be a polynomial p(x) that minimizes the distance relative to the uniform norm:

$$\|f - p\|_{\infty} = \max_{|x| \le 1} |f(x) - p(x)|.$$

However there is no analytic way to find such a polynomial. Instead, one can find a **"least** squares" approximation that minimizes the integral norm

$$||f - p||_2 = \left(\int_{-1}^1 |f(x) - p(x)|^2 dx\right)^{1/2}$$

The norm $\|\cdot\|_2$ is induced by the inner product

$$\langle g,h\rangle = \int_{-1}^{1} g(x)h(x)\,dx.$$

Therefore $||f - p||_2$ is minimal if p is the orthogonal projection of the function f on the subspace \mathcal{P}_3 of quadratic polynomials.

We should apply the Gram-Schmidt process to the polynomials $1, x, x^2$, which form a basis for \mathcal{P}_3 . This would yield an orthogonal basis p_0, p_1, p_2 . Then

$$p(x) = rac{\langle f, p_0
angle}{\langle p_0, p_0
angle} p_0(x) + rac{\langle f, p_1
angle}{\langle p_1, p_1
angle} p_1(x) + rac{\langle f, p_2
angle}{\langle p_2, p_2
angle} p_2(x).$$