## MATH 304 <br> Linear Algebra <br> Lecture 34a: <br> Orthogonality in inner product spaces.

## Orthogonal sets

Let $V$ be an inner product space with an inner product $\langle\cdot, \cdot\rangle$ and the induced norm $\|\mathbf{v}\|=\sqrt{\langle\mathbf{v}, \mathbf{v}\rangle}$.
Definition. A nonempty set $S \subset V$ of nonzero vectors is called an orthogonal set if all vectors in $S$ are mutually orthogonal. That is, $\mathbf{0} \notin S$ and $\langle\mathbf{x}, \mathbf{y}\rangle=0$ for any $\mathbf{x}, \mathbf{y} \in S, \mathbf{x} \neq \mathbf{y}$.
An orthogonal set $S \subset V$ is called orthonormal if $\|\mathbf{x}\|=1$ for any $\mathbf{x} \in S$.
Remark. Vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k} \in V$ form an orthonormal set if and only if

$$
\left\langle\mathbf{v}_{i}, \mathbf{v}_{j}\right\rangle= \begin{cases}1 & \text { if } i=j \\ 0 & \text { if } i \neq j\end{cases}
$$

## Example

$$
\begin{gathered}
\text { - } V=C[-\pi, \pi],\langle f, g\rangle=\int_{-\pi}^{\pi} f(x) g(x) d x . \\
f_{1}(x)=\sin x, f_{2}(x)=\sin 2 x, \ldots, f_{n}(x)=\sin n x, \ldots \\
\left\langle f_{m}, f_{n}\right\rangle=\int_{-\pi}^{\pi} \sin (m x) \sin (n x) d x= \begin{cases}\pi & \text { if } m=n, \\
0 & \text { if } m \neq n .\end{cases}
\end{gathered}
$$

Thus the set $\left\{f_{1}, f_{2}, f_{3}, \ldots\right\}$ is orthogonal but not orthonormal.

It is orthonormal with respect to a scaled inner product

$$
\langle\langle f, g\rangle\rangle=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) g(x) d x
$$

## Orthogonality $\Longrightarrow$ linear independence

Theorem Suppose $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}$ are nonzero vectors that form an orthogonal set. Then $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}$ are linearly independent.

Proof: Suppose $t_{1} \mathbf{v}_{1}+t_{2} \mathbf{v}_{2}+\cdots+t_{k} \mathbf{v}_{k}=\mathbf{0}$ for some $t_{1}, t_{2}, \ldots, t_{k} \in \mathbb{R}$.
Then for any index $1 \leq i \leq k$ we have

$$
\begin{gathered}
\left\langle t_{1} \mathbf{v}_{1}+t_{2} \mathbf{v}_{2}+\cdots+t_{k} \mathbf{v}_{k}, \mathbf{v}_{i}\right\rangle=\left\langle\mathbf{0}, \mathbf{v}_{i}\right\rangle=0 . \\
\Longrightarrow \\
t_{1}\left\langle\mathbf{v}_{1}, \mathbf{v}_{i}\right\rangle+t_{2}\left\langle\mathbf{v}_{2}, \mathbf{v}_{i}\right\rangle+\cdots+t_{k}\left\langle\mathbf{v}_{k}, \mathbf{v}_{i}\right\rangle=0
\end{gathered}
$$

By orthogonality, $t_{i}\left\langle\mathbf{v}_{i}, \mathbf{v}_{i}\right\rangle=0 \Longrightarrow t_{i}=0$.

## Orthonormal basis

Suppose $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$ is an orthonormal basis for an inner product space $V$.

Theorem 1 Let $\mathbf{x}=x_{1} \mathbf{v}_{1}+x_{2} \mathbf{v}_{2}+\cdots+x_{n} \mathbf{v}_{n}$ and $\mathbf{y}=y_{1} \mathbf{v}_{1}+y_{2} \mathbf{v}_{2}+\cdots+y_{n} \mathbf{v}_{n}$, where $x_{i}, y_{j} \in \mathbb{R}$.
Then
(i) $\langle\mathbf{x}, \mathbf{y}\rangle=x_{1} y_{1}+x_{2} y_{2}+\cdots+x_{n} y_{n}$,
(ii) $\|\mathbf{x}\|=\sqrt{x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}}$.

Theorem 2 For any vector $x \in V$,

$$
\mathbf{x}=\left\langle\mathbf{x}, \mathbf{v}_{1}\right\rangle \mathbf{v}_{1}+\left\langle\mathbf{x}, \mathbf{v}_{2}\right\rangle \mathbf{v}_{2}+\cdots+\left\langle\mathbf{x}, \mathbf{v}_{n}\right\rangle \mathbf{v}_{n} .
$$

## Orthogonal projection

Theorem Let $V$ be an inner product space and $V_{0}$ be a finite-dimensional subspace of $V$. Then any vector $x \in V$ is uniquely represented as $\mathbf{x}=\mathbf{p}+\mathbf{o}$, where $\mathbf{p} \in V_{0}$ and $\mathbf{o} \perp V_{0}$.

The component $\mathbf{p}$ is called the orthogonal projection of the vector $\mathbf{x}$ onto the subspace $V_{0}$.


The projection $\mathbf{p}$ is closer to $\mathbf{x}$ than any other vector in $V_{0}$. Hence the distance from $\mathbf{x}$ to $V_{0}$ is $\|\mathbf{x}-\mathbf{p}\|=\|\mathbf{o}\|$.

Theorem Let $V$ be an inner product space and $V_{0}$ be a finite-dimensional subspace of $V$. Then any vector $\mathbf{x} \in V$ is uniquely represented as $\mathbf{x}=\mathbf{p}+\mathbf{o}$, where $\mathbf{p} \in V_{0}$ and $\mathbf{o} \perp V_{0}$.

Theorem Suppose $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$ is an orthogonal basis for the subspace $V_{0}$. Then for any vector $\mathbf{x} \in V$ the orthogonal projection $\mathbf{p}$ onto $V_{0}$ is given by

$$
\mathbf{p}=\frac{\left\langle\mathbf{x}, \mathbf{v}_{1}\right\rangle}{\left\langle\mathbf{v}_{1}, \mathbf{v}_{1}\right\rangle} \mathbf{v}_{1}+\frac{\left\langle\mathbf{x}, \mathbf{v}_{2}\right\rangle}{\left\langle\mathbf{v}_{2}, \mathbf{v}_{2}\right\rangle} \mathbf{v}_{2}+\cdots+\frac{\left\langle\mathbf{x}, \mathbf{v}_{n}\right\rangle}{\left\langle\mathbf{v}_{n}, \mathbf{v}_{n}\right\rangle} \mathbf{v}_{n} .
$$

## The Gram-Schmidt orthogonalization process

Let $V$ be a vector space with an inner product.
Suppose $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{n}$ is a basis for $V$. Let
$\mathbf{v}_{1}=\mathbf{x}_{1}$,
$\mathbf{v}_{2}=\mathbf{x}_{2}-\frac{\left\langle\mathbf{x}_{2}, \mathbf{v}_{1}\right\rangle}{\left\langle\mathbf{v}_{1}, \mathbf{v}_{1}\right\rangle} \mathbf{v}_{1}$,
$\mathbf{v}_{3}=\mathbf{x}_{3}-\frac{\left\langle\mathbf{x}_{3}, \mathbf{v}_{1}\right\rangle}{\left\langle\mathbf{v}_{1}, \mathbf{v}_{1}\right\rangle} \mathbf{v}_{1}-\frac{\left\langle\mathbf{x}_{3}, \mathbf{v}_{2}\right\rangle}{\left\langle\mathbf{v}_{2}, \mathbf{v}_{2}\right\rangle} \mathbf{v}_{2}$,
$\mathbf{v}_{n}=\mathbf{x}_{n}-\frac{\left\langle\mathbf{x}_{n}, \mathbf{v}_{1}\right\rangle}{\left\langle\mathbf{v}_{1}, \mathbf{v}_{1}\right\rangle} \mathbf{v}_{1}-\cdots-\frac{\left\langle\mathbf{x}_{n}, \mathbf{v}_{n-1}\right\rangle}{\left\langle\mathbf{v}_{n-1}, \mathbf{v}_{n-1}\right\rangle} \mathbf{v}_{n-1}$.
Then $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$ is an orthogonal basis for $V$.

## Normalization

Let $V$ be a vector space with an inner product.
Suppose $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$ is an orthogonal basis for $V$.
Let $\mathbf{w}_{1}=\frac{\mathbf{v}_{1}}{\left\|\mathbf{v}_{1}\right\|}, \mathbf{w}_{2}=\frac{\mathbf{v}_{2}}{\left\|\mathbf{v}_{2}\right\|}, \ldots, \mathbf{w}_{n}=\frac{\mathbf{v}_{n}}{\left\|\mathbf{v}_{n}\right\|}$.
Then $\mathbf{w}_{1}, \mathbf{w}_{2}, \ldots, \mathbf{w}_{n}$ is an orthonormal basis for $V$.
Theorem Any finite-dimensional vector space with an inner product has an orthonormal basis.

Remark. An infinite-dimensional vector space with an inner product may or may not have an orthonormal basis.

Problem. Approximate the function $f(x)=e^{x}$ on the interval $[-1,1]$ by a quadratic polynomial.

The best approximation would be a polynomial $p(x)$ that minimizes the distance relative to the uniform norm:

$$
\|f-p\|_{\infty}=\max _{|x| \leq 1}|f(x)-p(x)| .
$$

However there is no analytic way to find such a polynomial. Instead, one can find a "least squares" approximation that minimizes the integral norm

$$
\|f-p\|_{2}=\left(\int_{-1}^{1}|f(x)-p(x)|^{2} d x\right)^{1 / 2}
$$

The norm $\|\cdot\|_{2}$ is induced by the inner product

$$
\langle g, h\rangle=\int_{-1}^{1} g(x) h(x) d x
$$

Therefore $\|f-p\|_{2}$ is minimal if $p$ is the orthogonal projection of the function $f$ on the subspace $\mathcal{P}_{3}$ of quadratic polynomials.

We should apply the Gram-Schmidt process to the polynomials $1, x, x^{2}$, which form a basis for $\mathcal{P}_{3}$.
This would yield an orthogonal basis $p_{0}, p_{1}, p_{2}$.
Then

$$
p(x)=\frac{\left\langle f, p_{0}\right\rangle}{\left\langle p_{0}, p_{0}\right\rangle} p_{0}(x)+\frac{\left\langle f, p_{1}\right\rangle}{\left\langle p_{1}, p_{1}\right\rangle} p_{1}(x)+\frac{\left\langle f, p_{2}\right\rangle}{\left\langle p_{2}, p_{2}\right\rangle} p_{2}(x) .
$$

