
MATH 304

Linear Algebra

Lecture 35:

Complex eigenvalues and eigenvectors.
Normal matrices.



Complex numbers

C: complex numbers.

Complex number: z = x + iy ,

where x , y ∈ R and i 2 = −1.

i =
√
−1: imaginary unit

Alternative notation: z = x + yi .

x = real part of z ,
iy = imaginary part of z

y = 0 =⇒ z = x (real number)
x = 0 =⇒ z = iy (purely imaginary number)



We add, subtract, and multiply complex numbers as

polynomials in i (but keep in mind that i 2 = −1).

If z1 = x1 + iy1 and z2 = x2 + iy2, then

z1 + z2 = (x1 + x2) + i(y1 + y2),

z1 − z2 = (x1 − x2) + i(y1 − y2),

z1z2 = (x1x2 − y1y2) + i(x1y2 + x2y1).

Given z = x + iy , the complex conjugate of z is

z̄ = x − iy . The modulus of z is |z | =
√

x2 + y 2.

zz̄ = (x + iy)(x − iy) = x2− (iy)2 = x2+ y 2 = |z |2.

z−1 =
z̄

|z |2 , (x + iy)−1 =
x − iy

x2 + y 2
.



Complex exponentials

Definition. For any z ∈ C let

ez = 1 + z +
z2

2!
+ · · ·+ zn

n!
+ · · ·

Remark. A sequence of complex numbers
z1 = x1 + iy1, z2 = x2 + iy2, . . . converges

to z = x + iy if xn → x and yn → y as n → ∞.

Theorem 1 If z = x + iy , x , y ∈ R, then

ez = ex(cos y + i sin y).

In particular, e iφ = cosφ+ i sinφ, φ ∈ R.

Theorem 2 ez+w = ez · ew for all z ,w ∈ C.



Proposition e iφ = cosφ+ i sinφ for all φ ∈ R.

Proof: e iφ = 1 + iφ+
(iφ)2

2!
+ · · ·+ (iφ)n

n!
+ · · ·

The sequence 1, i , i 2, i 3, . . . , in, . . . is periodic:
1, i ,−1,−i
︸ ︷︷ ︸

, 1, i ,−1,−i
︸ ︷︷ ︸

, . . .

It follows that

e iφ = 1− φ2

2!
+

φ4

4!
− · · ·+ (−1)k

φ2k

(2k)!
+ · · ·

+ i

(

φ− φ3

3!
+

φ5

5!
− · · ·+ (−1)k

φ2k+1

(2k + 1)!
+ · · ·

)

= cosφ+ i sinφ.



Geometric representation

Any complex number z = x + iy is represented by

the vector/point (x , y) ∈ R2.

y

x0

r

φ
0

x = r cosφ, y = r sinφ =⇒ z = r(cosφ+ i sinφ) = re iφ

If z1 = r1e
iφ1 and z2 = r2e

iφ2, then

z1z2 = r1r2e
i(φ1+φ2), z1/z2 = (r1/r2)e

i(φ1−φ2).



Fundamental Theorem of Algebra
Any polynomial of degree n ≥ 1, with complex
coefficients, has exactly n roots (counting with

multiplicities).

Equivalently, if

p(z) = anz
n + an−1z

n−1 + · · ·+ a1z + a0,

where ai ∈ C and an 6= 0, then there exist complex
numbers z1, z2, . . . , zn such that

p(z) = an(z − z1)(z − z2) . . . (z − zn).



Complex eigenvalues and eigenvectors

Example. A =

(
0 −1
1 0

)

. det(A− λI ) = λ2 + 1.

Characteristic roots: λ1 = i and λ2 = −i .

Associated eigenvectors: v1=

(
1

−i

)

and v2=

(
1

i

)

.

(
0 −1

1 0

)(
1

−i

)

=

(
i

1

)

= i

(
1

−i

)

,

(
0 −1
1 0

)(
1
i

)

=

(
−i

1

)

= −i

(
1
i

)

.

v1, v2 is a basis of eigenvectors. In which space?



Complexification

Instead of the real vector space R
2, we consider a

complex vector space C2 (all complex numbers are
admissible as scalars).

The linear operator f : R2 → R
2, f (x) = Ax is

extended to a complex linear operator

F : C2 → C
2, F (x) = Ax.

The vectors v1 = (1,−i) and v2 = (1, i) form a
basis for C2.

C2 is also a real vector space (of real dimension 4). The
standard real basis for C2 is e1 = (1, 0), e2 = (0, 1),
ie1 = (i , 0), ie2 = (0, i). The matrix of the operator F with

respect to this basis has block structure

(
A O

O A

)

.



Dot product of complex vectors

Dot product of real vectors
x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Rn:

x · y = x1y1 + x2y2 + · · ·+ xnyn.

Dot product of complex vectors
x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Cn:

x · y = x1y1 + x2y2 + · · ·+ xnyn.

If z = r + it (t, s ∈ R) then z = r − it,
zz = r 2 + t2 = |z |2.
Hence x · x = |x1|2 + |x2|2 + · · ·+ |xn|2 ≥ 0.
Also, x · x = 0 if and only if x = 0.

The norm is defined by ‖x‖ =
√
x · x.



Normal matrices

Definition. An n×n matrix A is called

• symmetric if AT = A;
• orthogonal if AAT = ATA = I , i.e., AT = A−1;

• normal if AAT = ATA.

Theorem Let A be an n×n matrix with real
entries. Then
(a) A is normal ⇐⇒ there exists an orthonormal

basis for Cn consisting of eigenvectors of A;
(b) A is symmetric ⇐⇒ there exists an orthonormal

basis for Rn consisting of eigenvectors of A.



Example. A =





1 0 1
0 1 0

1 0 1



.

• A is symmetric.

• A has three eigenvalues: 0, 1, and 2.
• Associated eigenvectors are v1 = (−1, 0, 1),

v2 = (0, 1, 0), and v3 = (1, 0, 1), respectively.

• Vectors 1√
2
v1, v2,

1√
2
v3 form an orthonormal

basis for R3.



Theorem Suppose A is a normal matrix. Then for
any x ∈ Cn and λ ∈ C one has

Ax = λx ⇐⇒ ATx = λx.

Thus any normal matrix A shares with AT all real
eigenvalues and the corresponding eigenvectors.

Also, Ax = λx ⇐⇒ Ax = λ x for any matrix A

with real entries.

Corollary All eigenvalues λ of a symmetric matrix

are real (λ = λ). All eigenvalues λ of an
orthogonal matrix satisfy λ = λ−1 ⇐⇒ |λ| = 1.


