MATH 304
 Linear Algebra

Lecture 39:
Review for the final exam.

Topics for the final exam: Part I

Elementary linear algebra (Leon 1.1-1.5, 2.1-2.2)

- Systems of linear equations: elementary operations, Gaussian elimination, back substitution.
- Matrix of coefficients and augmented matrix. Elementary row operations, row echelon form and reduced row echelon form.
- Matrix algebra. Inverse matrix.
- Determinants: explicit formulas for 2×2 and 3×3 matrices, row and column expansions, elementary row and column operations.

Topics for the final exam: Part II

Abstract linear algebra (Leon 3.1-3.6, 4.1-4.3)

- Vector spaces (vectors, matrices, polynomials, functional spaces).
- Subspaces. Nullspace, column space, and row space of a matrix.
- Span, spanning set. Linear independence.
- Bases and dimension.
- Rank and nullity of a matrix.
- Coordinates relative to a basis.
- Change of basis, transition matrix.
- Linear transformations.
- Matrix of a linear transformation.
- Change of basis for a linear operator.
- Similarity of matrices.

Topics for the final exam: Parts III-IV

Advanced linear algebra (Leon 5.1-5.7, 6.1-6.3)

- Euclidean structure in \mathbb{R}^{n} (length, angle, dot product).
- Inner products and norms.
- Orthogonal complement, orthogonal projection.
- Least squares problems.
- The Gram-Schmidt orthogonalization process.
- Orthogonal polynomials.
- Eigenvalues, eigenvectors, eigenspaces.
- Characteristic polynomial.
- Bases of eigenvectors, diagonalization.
- Matrix exponentials.
- Complex eigenvalues and eigenvectors.
- Orthogonal matrices.
- Rigid motions, rotations in space.

Bases of eigenvectors

Let A be an $n \times n$ matrix with real entries.

- A has n distinct real eigenvalues \Longrightarrow a basis for \mathbb{R}^{n} formed by eigenvectors of A
- A has complex eigenvalues \Longrightarrow no basis for \mathbb{R}^{n} formed by eigenvectors of A
- A has n distinct complex eigenvalues \Longrightarrow a basis for \mathbb{C}^{n} formed by eigenvectors of A
- A has multiple eigenvalues \Longrightarrow further information is needed
- an orthonormal basis for \mathbb{R}^{n} formed by eigenvectors of A
$\Longleftrightarrow A$ is symmetric: $A^{T}=A$

Problem. For each of the following 2×2 matrices determine whether it allows
(a) a basis of eigenvectors for \mathbb{R}^{2},
(b) a basis of eigenvectors for \mathbb{C}^{2},
(c) an orthonormal basis of eigenvectors for \mathbb{R}^{2}.

$$
\begin{array}{ll}
A=\left(\begin{array}{ll}
1 & 0 \\
0 & 4
\end{array}\right) & (\mathrm{a}),(\mathrm{b}),(\mathrm{c}): \text { yes } \\
B=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) & (\mathrm{a}),(\mathrm{b}),(\mathrm{c}): \text { no }
\end{array}
$$

Problem. For each of the following 2×2 matrices determine whether it allows
(a) a basis of eigenvectors for \mathbb{R}^{2},
(b) a basis of eigenvectors for \mathbb{C}^{2},
(c) an orthonormal basis of eigenvectors for \mathbb{R}^{2}.

$$
\begin{array}{ll}
C=\left(\begin{array}{ll}
2 & 3 \\
1 & 4
\end{array}\right) & (a),(b): \text { yes } \quad(c): \text { no } \\
D=\left(\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right) & \text { (b): yes } \quad(a),(c): \text { no }
\end{array}
$$

Problem. Consider a linear operator $L: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ defined by $L(\mathbf{v})=\mathbf{v}_{0} \times \mathbf{v}$, where
$\mathbf{v}_{0}=(3 / 5,0,-4 / 5)$.
(a) Find the matrix B of the operator L.
(b) Find the range and kernel of L.
(c) Find the eigenvalues of L.
(d) Find the matrix of the operator L^{2017} (L applied 2017 times).
$L(\mathbf{v})=\mathbf{v}_{0} \times \mathbf{v}, \quad \mathbf{v}_{0}=(3 / 5,0,-4 / 5)$.
Let $\mathbf{v}=(x, y, z)=x \mathbf{e}_{1}+y \mathbf{e}_{2}+z \mathbf{e}_{3}$. Then

$$
\begin{gathered}
L(\mathbf{v})=\mathbf{v}_{0} \times \mathbf{v}=\left|\begin{array}{ccc}
\mathbf{e}_{1} & \mathbf{e}_{2} & \mathbf{e}_{3} \\
3 / 5 & 0 & -4 / 5 \\
x & y & z
\end{array}\right| \\
=\left|\begin{array}{cc}
0 & -4 / 5 \\
y & z
\end{array}\right| \mathbf{e}_{1}-\left|\begin{array}{cc}
3 / 5 & -4 / 5 \\
x & z
\end{array}\right| \mathbf{e}_{2}+\left|\begin{array}{cc}
3 / 5 & 0 \\
x & y
\end{array}\right| \mathbf{e}_{3} \\
=\frac{4}{5} y \mathbf{e}_{1}-\left(\frac{4}{5} x+\frac{3}{5} z\right) \mathbf{e}_{2}+\frac{3}{5} y \mathbf{e}_{3}=\left(\frac{4}{5} y,-\frac{4}{5} x-\frac{3}{5} z, \frac{3}{5} y\right) .
\end{gathered}
$$

In particular, $L\left(\mathbf{e}_{1}\right)=\left(0,-\frac{4}{5}, 0\right), \quad L\left(\mathbf{e}_{2}\right)=\left(\frac{4}{5}, 0, \frac{3}{5}\right)$, $L\left(\mathbf{e}_{3}\right)=\left(0,-\frac{3}{5}, 0\right)$.

Therefore $B=\left(\begin{array}{ccc}0 & 4 / 5 & 0 \\ -4 / 5 & 0 & -3 / 5 \\ 0 & 3 / 5 & 0\end{array}\right)$.
The range of the operator L is spanned by columns of the matrix B. It follows that Range (L) is the plane spanned by $\mathbf{v}_{1}=(0,1,0)$ and $\mathbf{v}_{2}=(4,0,3)$.
The kernel of L is the nullspace of the matrix B, i.e., the solution set for the equation $B \mathbf{x}=\mathbf{0}$.

$$
\begin{gathered}
\left(\begin{array}{ccc}
0 & 4 / 5 & 0 \\
-4 / 5 & 0 & -3 / 5 \\
0 & 3 / 5 & 0
\end{array}\right) \rightarrow\left(\begin{array}{ccc}
1 & 0 & 3 / 4 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right) \\
\Longrightarrow x+\frac{3}{4} z=y=0 \Longrightarrow x=t(-3 / 4,0,1)
\end{gathered}
$$

Alternatively, the kernel of L is the set of vectors
$\mathbf{v} \in \mathbb{R}^{3}$ such that $L(\mathbf{v})=\mathbf{v}_{0} \times \mathbf{v}=\mathbf{0}$.
It follows that this is the line spanned by
$\mathbf{v}_{0}=(3 / 5,0,-4 / 5)$.
Characteristic polynomial of the matrix B :

$$
\begin{gathered}
\operatorname{det}(B-\lambda I)=\left|\begin{array}{ccc}
-\lambda & 4 / 5 & 0 \\
-4 / 5 & -\lambda & -3 / 5 \\
0 & 3 / 5 & -\lambda
\end{array}\right| \\
=-\lambda^{3}-(3 / 5)^{2} \lambda-(4 / 5)^{2} \lambda=-\lambda^{3}-\lambda=-\lambda\left(\lambda^{2}+1\right) .
\end{gathered}
$$

The eigenvalues are $0, i$, and $-i$.

The matrix of the operator L^{2017} is B^{2017}.
Since the matrix B has eigenvalues $0, i$, and $-i$, it is diagonalizable in \mathbb{C}^{3}. Namely, $B=U D U^{-1}$, where U is an invertible matrix with complex entries and

$$
D=\left(\begin{array}{rrr}
0 & 0 & 0 \\
0 & i & 0 \\
0 & 0 & -i
\end{array}\right)
$$

Then $B^{2017}=U D^{2017} U^{-1}$. We have that $D^{2017}=$ $=\operatorname{diag}\left(0, i^{2017},(-i)^{2017}\right)=\operatorname{diag}(0, i,-i)=D$. Hence

$$
B^{2017}=U D U^{-1}=B=\left(\begin{array}{ccc}
0 & 4 / 5 & 0 \\
-4 / 5 & 0 & -3 / 5 \\
0 & 3 / 5 & 0
\end{array}\right)
$$

