
MATH 304

Linear Algebra

Lecture 40:
Review for the final exam (continued).



Topics for the final exam: Part I

Elementary linear algebra (Leon 1.1–1.5, 2.1–2.2)

• Systems of linear equations: elementary
operations, Gaussian elimination, back substitution.

• Matrix of coefficients and augmented matrix.
Elementary row operations, row echelon form and
reduced row echelon form.

• Matrix algebra. Inverse matrix.

• Determinants: explicit formulas for 2×2 and
3×3 matrices, row and column expansions,

elementary row and column operations.



Topics for the final exam: Part II

Abstract linear algebra (Leon 3.1–3.6, 4.1–4.3)

• Vector spaces (vectors, matrices, polynomials, functional
spaces).
• Subspaces. Nullspace, column space, and row space of a
matrix.
• Span, spanning set. Linear independence.
• Bases and dimension.
• Rank and nullity of a matrix.
• Coordinates relative to a basis.
• Change of basis, transition matrix.

• Linear transformations.
• Matrix of a linear transformation.
• Change of basis for a linear operator.
• Similarity of matrices.



Topics for the final exam: Parts III–IV

Advanced linear algebra (Leon 5.1–5.7, 6.1–6.3)

• Euclidean structure in Rn (length, angle, dot product).
• Inner products and norms.
• Orthogonal complement, orthogonal projection.
• Least squares problems.
• The Gram-Schmidt orthogonalization process.
• Orthogonal polynomials.

• Eigenvalues, eigenvectors, eigenspaces.
• Characteristic polynomial.
• Bases of eigenvectors, diagonalization.
• Matrix exponentials.
• Complex eigenvalues and eigenvectors.
• Orthogonal matrices.
• Rigid motions, rotations in space.



Problem. Let L denote a linear operator on R3 that acts on
vectors from the standard basis as follows: L(e1) = e3,
L(e2) = e1, L(e3) = e2. Describe L in geometric terms.

Alternative solution: The operator L maps one orthonormal
basis to an orthonormal basis (namely, the standard basis is
mapped to itself). Therefore L is a rigid motion. According
to the classification of linear isometries in R3, L is either a
rotation about an axis, or a reflection in a plane, or the
composition of two.

Note that L3(e1) = L(L(L(e1))) = L(L(e3)) = L(e2) = e1.
Likewise, L3(e2) = e2 and L3(e3) = e3. Since L3 is linear, it
is the identity map. Now it follows that L preserves
orientation and so is a rotation. Let φ be the angle of
rotation, 0 ≤ φ ≤ π. Then L3 is a rotation by 3φ. Since L3

is the identity, we obtain that 3φ = 2π. The axis of rotation
is the line spanned by (1, 1, 1) since L(e1 + e2 + e3) =
= L(e1) + L(e2) + L(e3) = e3 + e1 + e2.



Problem. Find a matrix exponential exp(A),

where A =

(

1 1
1 1

)

.

One way to find exp(A) is to diagonalize the matrix A.

Eigenvalues: λ1 = 0, λ2 = 2.

Associated eigenvectors: v1 =

(

−1
1

)

, v2 =

(

1
1

)

.

Diagonalization: A = UDU−1, where

D =

(

0 0
0 2

)

, U =

(

−1 1
1 1

)

.

Then eA = UeDU−1 =

(

−1 1
1 1

)(

e0 0
0 e2

)(

−1 1
1 1

)

−1

.

Solution: exp(A) =
1

2

(

e2 + 1 e2 − 1
e2 − 1 e2 + 1

)

.



Problem. Consider a system of linear equations in
variables x , y , z :















x + 2y − z = 1,

2x + 3y + z = 3,
x + 3y + az = 0,

x + y + 2z = b.

Find values of parameters a and b for which the

system has infinitely many solutions, and solve the
system for these values.



To determine the number of solutions for the system, we
convert its augmented matrix to row echelon form using
elementary row operations:








1 2 −1 1
2 3 1 3
1 3 a 0
1 1 2 b









→









1 2 −1 1
0 −1 3 1
1 3 a 0
1 1 2 b









→









1 2 −1 1
0 −1 3 1
0 1 a + 1 −1
1 1 2 b









→









1 2 −1 1
0 −1 3 1
0 1 a + 1 −1
0 −1 3 b − 1









→









1 2 −1 1
0 1 −3 −1
0 1 a + 1 −1
0 −1 3 b − 1









→









1 2 −1 1
0 1 −3 −1
0 0 a + 4 0
0 −1 3 b − 1











→









1 2 −1 1
0 1 −3 −1
0 0 a + 4 0
0 0 0 b − 2









.

Now the augmented matrix is in row echelon form (except for
the case a = −4, b 6= 2 when one also needs to exchange the
last two rows).

If b 6= 2, then there is a leading entry in the rightmost
column, which indicates inconsistency.

In the case b = 2, the system is consistent. If, additionally,
a 6= −4 then there is a leading entry in each of the first three
columns, which implies uniqueness of the solution.

Thus the system has infinitely many solutions only if a = −4
and b = 2.



Thus the system has infinitely many solutions only if a = −4
and b = 2. To find the solutions, we proceed to reduced row
echelon form (for these particular values of parameters):









1 2 −1 1
0 1 −3 −1
0 0 0 0
0 0 0 0









→









1 0 5 3
0 1 −3 −1
0 0 0 0
0 0 0 0









.

The latter matrix is the augmented matrix of the following
system of linear equations (which is equivalent to the given
one):

{

x + 5z = 3,
y − 3z = −1

⇐⇒

{

x = −5z + 3,
y = 3z − 1.

The general solution is (x , y , z) = (−5t + 3, 3t − 1, t)
= (3,−1, 0) + t(−5, 3, 1), t ∈ R.



Problem. Let V be the vector space spanned by

functions f1(x) = x sin x , f2(x) = x cos x ,
f3(x) = sin x , and f4(x) = cos x .

Consider the linear operator D : V → V ,
D = d/dx .

(a) Find the matrix A of the operator D relative to

the basis f1, f2, f3, f4.
(b) Find the eigenvalues of A.

(c) Is the matrix A diagonalizable in R
4 (in C

4)?



A is a 4×4 matrix whose columns are coordinates of
functions Dfi = f ′

i
relative to the basis f1, f2, f3, f4.

f ′
1
(x) = (x sin x)′ = x cos x + sin x = f2(x) + f3(x),

f ′
2
(x) = (x cos x)′ = −x sin x + cos x

= −f1(x) + f4(x),

f ′
3
(x) = (sin x)′ = cos x = f4(x),

f ′
4
(x) = (cos x)′ = − sin x = −f3(x).

Thus A =









0 −1 0 0
1 0 0 0
1 0 0 −1

0 1 1 0









.



Eigenvalues of A are roots of its characteristic

polynomial

det(A− λI ) =

∣

∣

∣

∣

∣

∣

∣

∣

−λ −1 0 0
1 −λ 0 0

1 0 −λ −1
0 1 1 −λ

∣

∣

∣

∣

∣

∣

∣

∣

Expand the determinant by the 1st row:

det(A− λI ) = −λ

∣

∣

∣

∣

∣

∣

−λ 0 0

0 −λ −1
1 1 −λ

∣

∣

∣

∣

∣

∣

− (−1)

∣

∣

∣

∣

∣

∣

1 0 0

1 −λ −1
0 1 −λ

∣

∣

∣

∣

∣

∣

= λ2(λ2+1)+(λ2+1) = (λ2+1)2 = (λ−i)2(λ+i)2.

The roots are i and −i , both of multiplicity 2.



One can show that both eigenspaces of A are one-dimensional.
The eigenspace for i is spanned by (0, 0, i , 1) and the
eigenspace for −i is spanned by (0, 0,−i , 1). It follows that
the matrix A is not diagonalizable in C

4.

There is also an indirect way to show that A is not
diagonalizable in C4. Assume the contrary. Then
A = UPU−1, where U is an invertible matrix with complex
entries and

P =









i 0 0 0
0 i 0 0
0 0 −i 0
0 0 0 −i









(note that P should have the same characteristic polynomial
as A). This would imply that A2 = UP2U−1. But P2 = −I
so that A2 = U(−I )U−1 = −I .

Let us check if A2 = −I .



A2 =









0 −1 0 0

1 0 0 0
1 0 0 −1

0 1 1 0









2

=









−1 0 0 0

0 −1 0 0
0 −2 −1 0

2 0 0 −1









.

Since A2 6= −I , we have a contradiction. Thus the

matrix A is not diagonalizable in C
4.


