MATH 304-510 Spring 2017

Sample problems for Test 1

Any problem may be altered or replaced by a different one!

Problem 1 Find a quadratic polynomial p(x) such that p(1) = 1, p(2) = 3, and p(3) = 7.

Problem 2 Let A be a square matrix such that $A^3 = O$.

- (i) Prove that the matrix A is not invertible.
- (ii) Prove that the matrix A + I is invertible.

Problem 3 Let
$$A = \begin{pmatrix} 1 & -2 & 4 & 1 \\ 2 & 3 & 2 & 0 \\ 2 & 0 & -1 & 1 \\ 2 & 0 & 0 & 1 \end{pmatrix}$$
.

- (i) Evaluate the determinant of the matrix A.
- (ii) Find the inverse matrix A^{-1} .

Problem 4 Determine which of the following subsets of \mathbb{R}^3 are subspaces. Briefly explain.

- (i) The set S_1 of vectors $(x, y, z) \in \mathbb{R}^3$ such that xyz = 0.
- (ii) The set S_2 of vectors $(x, y, z) \in \mathbb{R}^3$ such that x + y + z = 0. (iii) The set S_3 of vectors $(x, y, z) \in \mathbb{R}^3$ such that $y^2 + z^2 = 0$. (iv) The set S_4 of vectors $(x, y, z) \in \mathbb{R}^3$ such that $y^2 z^2 = 0$.

Problem 5 Let
$$B = \begin{pmatrix} 0 & -1 & 4 & 1 \\ 1 & 1 & 2 & -1 \\ -3 & 0 & -1 & 0 \\ 2 & -1 & 0 & 1 \end{pmatrix}$$
.

- (i) Find the rank and the nullity of the matrix B.
- (ii) Find a basis for the row space of B, then extend this basis to a basis for \mathbb{R}^4 .
- (iii) Find a basis for the nullspace of B.

Problem 6 Show that the functions $f_1(x) = x$, $f_2(x) = xe^x$, and $f_3(x) = e^{-x}$ are linearly independent in the vector space $C^{\infty}(\mathbb{R})$.

Problem 7 Let V be a finite-dimensional vector space and V_0 be a proper subspace of V (where proper means that $V_0 \neq V$). Prove that dim $V_0 < \dim V$.