MATH 304
Linear Algebra

Lecture 33:
Bases of eigenvectors.
Diagonalization.
Eigenvalues and eigenvectors of an operator

Definition. Let V be a vector space and $L : V \to V$ be a linear operator. A number λ is called an **eigenvalue** of the operator L if $L(v) = \lambda v$ for a nonzero vector $v \in V$. The vector v is called an **eigenvector** of L associated with the eigenvalue λ. (If V is a functional space then eigenvectors are also called **eigenfunctions**.)

If $V = \mathbb{R}^n$ then the linear operator L is given by $L(x) = Ax$, where A is an $n \times n$ matrix.

In this case, eigenvalues and eigenvectors of the operator L are precisely eigenvalues and eigenvectors of the matrix A.
Theorem If v_1, v_2, \ldots, v_k are eigenvectors of a linear operator L associated with distinct eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_k$, then v_1, v_2, \ldots, v_k are linearly independent.

Corollary Let A be an $n \times n$ matrix such that the characteristic equation $\det(A - \lambda I) = 0$ has n distinct real roots. Then \mathbb{R}^n has a basis consisting of eigenvectors of A.

Proof: Let $\lambda_1, \lambda_2, \ldots, \lambda_n$ be distinct real roots of the characteristic equation. Any λ_i is an eigenvalue of A, hence there is an associated eigenvector v_i. By the theorem, vectors v_1, v_2, \ldots, v_n are linearly independent. Therefore they form a basis for \mathbb{R}^n.
Theorem If $\lambda_1, \lambda_2, \ldots, \lambda_k$ are distinct real numbers, then the functions $e^{\lambda_1x}, e^{\lambda_2x}, \ldots, e^{\lambda_kx}$ are linearly independent.

Proof: Consider a linear operator $D : C^\infty(\mathbb{R}) \rightarrow C^\infty(\mathbb{R})$ given by $Df = f'$. Then $e^{\lambda_1x}, \ldots, e^{\lambda_kx}$ are eigenfunctions of D associated with distinct eigenvalues $\lambda_1, \ldots, \lambda_k$.
Characteristic polynomial of an operator

Let L be a linear operator on a finite-dimensional vector space V. Let u_1, u_2, \ldots, u_n be a basis for V. Let A be the matrix of L with respect to this basis.

Definition. The characteristic polynomial of the matrix A is called the characteristic polynomial of the operator L.

Then eigenvalues of L are roots of its characteristic polynomial.

Theorem. The characteristic polynomial of the operator L is well defined. That is, it does not depend on the choice of a basis.
Theorem. The characteristic polynomial of the operator L is well defined. That is, it does not depend on the choice of a basis.

Proof: Let B be the matrix of L with respect to a different basis v_1, v_2, \ldots, v_n. Then $A = UBU^{-1}$, where U is the transition matrix from the basis v_1, \ldots, v_n to u_1, \ldots, u_n. We have to show that $\det(A - \lambda I) = \det(B - \lambda I)$ for all $\lambda \in \mathbb{R}$. We obtain

$$
\det(A - \lambda I) = \det(UBU^{-1} - \lambda I) \\
= \det(UBU^{-1} - U(\lambda I)U^{-1}) = \det(U(B - \lambda I)U^{-1}) \\
= \det(U) \det(B - \lambda I) \det(U^{-1}) = \det(B - \lambda I).
$$
Diagonalization

Let L be a linear operator on a finite-dimensional vector space V. Then the following conditions are equivalent:

- the matrix of L with respect to some basis is diagonal;
- there exists a basis for V formed by eigenvectors of L.

The operator L is **diagonalizable** if it satisfies these conditions.

Let A be an $n \times n$ matrix. Then the following conditions are equivalent:

- A is the matrix of a diagonalizable operator;
- A is similar to a diagonal matrix, i.e., it is represented as $A = UBU^{-1}$, where the matrix B is diagonal;
- there exists a basis for \mathbb{R}^n formed by eigenvectors of A.

The matrix A is **diagonalizable** if it satisfies these conditions. Otherwise A is called **defective**.
Example. \[A = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}. \]

- The matrix \(A \) has two eigenvalues: 1 and 3.
- The eigenspace of \(A \) associated with the eigenvalue 1 is the line spanned by \(\mathbf{v}_1 = (-1, 1) \).
- The eigenspace of \(A \) associated with the eigenvalue 3 is the line spanned by \(\mathbf{v}_2 = (1, 1) \).
- Eigenvectors \(\mathbf{v}_1 \) and \(\mathbf{v}_2 \) form a basis for \(\mathbb{R}^2 \).

Thus the matrix \(A \) is diagonalizable. Namely,
\[A = U B U^{-1}, \]
where
\[B = \begin{pmatrix} 1 & 0 \\ 0 & 3 \end{pmatrix}, \quad U = \begin{pmatrix} -1 & 1 \\ 1 & 1 \end{pmatrix}. \]
Example. \(A = \begin{pmatrix} 1 & 1 & -1 \\ 1 & 1 & 1 \\ 0 & 0 & 2 \end{pmatrix} \).

- The matrix \(A \) has two eigenvalues: 0 and 2.
- The eigenspace corresponding to 0 is spanned by \(\mathbf{v}_1 = (-1, 1, 0) \).
- The eigenspace corresponding to 2 is spanned by \(\mathbf{v}_2 = (1, 1, 0) \) and \(\mathbf{v}_3 = (-1, 0, 1) \).
- Eigenvectors \(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3 \) form a basis for \(\mathbb{R}^3 \).

Thus the matrix \(A \) is diagonalizable. Namely,

\[
A = UBU^{-1},
\]

where

\[
B = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}, \quad U = \begin{pmatrix} -1 & 1 & -1 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.
\]
Problem. Diagonalize the matrix $A = \begin{pmatrix} 4 & 3 \\ 0 & 1 \end{pmatrix}$.

We need to find a diagonal matrix B and an invertible matrix U such that $A = UBU^{-1}$.

Suppose that $\mathbf{v}_1 = (x_1, y_1)$, $\mathbf{v}_2 = (x_2, y_2)$ is a basis for \mathbb{R}^2 formed by eigenvectors of A, i.e., $A\mathbf{v}_i = \lambda_i \mathbf{v}_i$ for some $\lambda_i \in \mathbb{R}$. Then we can take

$$B = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}, \quad U = \begin{pmatrix} x_1 & x_2 \\ y_1 & y_2 \end{pmatrix}.$$

Note that U is the transition matrix from the basis $\mathbf{v}_1, \mathbf{v}_2$ to the standard basis.
Problem. Diagonalize the matrix $A = \begin{pmatrix} 4 & 3 \\ 0 & 1 \end{pmatrix}$.

Characteristic equation of A: $\begin{vmatrix} 4 - \lambda & 3 \\ 0 & 1 - \lambda \end{vmatrix} = 0$.

$(4 - \lambda)(1 - \lambda) = 0 \implies \lambda_1 = 4, \; \lambda_2 = 1$.

Associated eigenvectors: $v_1 = (1, 0), \; v_2 = (-1, 1)$.

Thus $A = U B U^{-1}$, where

$B = \begin{pmatrix} 4 & 0 \\ 0 & 1 \end{pmatrix}, \; U = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}$.
Problem. Let \(A = \begin{pmatrix} 4 & 3 \\ 0 & 1 \end{pmatrix} \). Find \(A^5 \).

We know that \(A = UBU^{-1} \), where

\[
B = \begin{pmatrix} 4 & 0 \\ 0 & 1 \end{pmatrix}, \quad U = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}.
\]

Then \(A^5 = UBU^{-1} UBU^{-1} UBU^{-1} UBU^{-1} UBU^{-1} \)

\[
= UB^5 U^{-1} = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1024 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}
\]

\[
= \begin{pmatrix} 1024 & -1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1024 & 1023 \\ 0 & 1 \end{pmatrix}.
\]
Problem. Let $A = \begin{pmatrix} 4 & 3 \\ 0 & 1 \end{pmatrix}$. Find a matrix C such that $C^2 = A$.

We know that $A = UBU^{-1}$, where

$$B = \begin{pmatrix} 4 & 0 \\ 0 & 1 \end{pmatrix}, \quad U = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}. $$

Suppose that $D^2 = B$ for some matrix D. Let $C = UDU^{-1}$. Then $C^2 = UDU^{-1} UDU^{-1} = UD^2 U^{-1} = UBU^{-1} = A$.

We can take $D = \begin{pmatrix} \sqrt{4} & 0 \\ 0 & \sqrt{1} \end{pmatrix} = \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}$.

Then $C = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 1 \\ 0 & 1 \end{pmatrix}$.
There are *two obstructions* to existence of a basis consisting of eigenvectors. They are illustrated by the following examples.

Example 1. $A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$.

$\det(A - \lambda I) = (\lambda - 1)^2$. Hence $\lambda = 1$ is the only eigenvalue. The associated eigenspace is the line $t(1, 0)$.

Example 2. $A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$.

$\det(A - \lambda I) = \lambda^2 + 1$.

\implies no real eigenvalues or eigenvectors

(However there are *complex* eigenvalues/eigenvectors.)