Sample problems for the final exam

Any problem may be altered or replaced by a different one!

Problem 1 ($\mathbf{1 5}$ pts.) The planes $x+2 y+2 z=1$ and $4 x+7 y+4 z=5$ intersect in a line. Find a parametric representation for the line.

Problem 2 (20 pts.) Consider a linear operator $L: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ given by

$$
L(\mathbf{v})=\left(\mathbf{v} \cdot \mathbf{v}_{1}\right) \mathbf{v}_{2}, \quad \text { where } \mathbf{v}_{1}=(1,1,1), \mathbf{v}_{2}=(1,2,2)
$$

(i) Find the matrix of the operator L.
(ii) Find the dimensions of the image and the null-space of L.
(iii) Find bases for the image and the null-space of L.

Problem 3 (20 pts.) Let $A=\left(\begin{array}{rrrr}1 & 1 & 0 & 0 \\ 1 & 1 & 1 & -1 \\ 0 & 1 & -2 & 2 \\ 0 & 1 & 0 & 1\end{array}\right)$.
(i) Evaluate the determinant of the matrix A.
(ii) Find the inverse matrix A^{-1}.

Problem 4 (25 pts.) Let $B=\left(\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1\end{array}\right)$.
(i) Find all eigenvalues of the matrix B.
(ii) Find a basis for \mathbb{R}^{3} consisting of eigenvectors of B ?
(iii) Find an orthonormal basis for \mathbb{R}^{3} consisting of eigenvectors of B ?

Problem 5 (20 pts .) Let V be a three-dimensional subspace of \mathbb{R}^{4} spanned by vectors $\mathbf{x}_{1}=(1,1,0,0), \mathbf{x}_{2}=(1,3,1,1)$, and $\mathbf{x}_{3}=(1,1,-3,-1)$.
(i) Find an orthogonal basis for V.
(ii) Find the distance from the point $\mathbf{y}=(2,0,2,4)$ to the subspace V.

Bonus Problem 6 ($\mathbf{1 5}$ pts.) Let S be the set of all points in \mathbb{R}^{3} that lie at same distance from the planes $x+2 y+2 z=1$ and $4 x+7 y+4 z=5$. Show that S is the union of two planes and find these planes.

Bonus Problem 7 (20 pts.) Find a quadratic polynomial that is an orthogonal polynomial relative to the inner product

$$
\langle p, q\rangle=\int_{0}^{1} x p(x) q(x) d x
$$

