MATH 311-504
 Topics in Applied Mathematics
 Lecture 10:
 Inverse matrix (continued).
 Determinant.

Inverse matrix

Definition. Let A be an $n \times n$ matrix. The inverse of A is an $n \times n$ matrix, denoted A^{-1}, such that

$$
A A^{-1}=A^{-1} A=l
$$

If A^{-1} exists then the matrix A is called invertible.

Basic properties of inverse matrices:

- The inverse matrix (if it exists) is unique.
- If A is invertible, so is A^{-1}, and $\left(A^{-1}\right)^{-1}=A$.
- If $n \times n$ matrices $A_{1}, A_{2}, \ldots, A_{k}$ are invertible, so is $A_{1} A_{2} \ldots A_{k}$, and $\left(A_{1} A_{2} \ldots A_{k}\right)^{-1}=A_{k}^{-1} \ldots A_{2}^{-1} A_{1}^{-1}$.

Inverting diagonal matrices

Theorem A diagonal matrix $D=\operatorname{diag}\left(d_{1}, \ldots, d_{n}\right)$ is invertible if and only if all diagonal entries are nonzero: $d_{i} \neq 0$ for $1 \leq i \leq n$.
If D is invertible then $D^{-1}=\operatorname{diag}\left(d_{1}^{-1}, \ldots, d_{n}^{-1}\right)$.

$$
\left(\begin{array}{cccc}
d_{1} & 0 & \ldots & 0 \\
0 & d_{2} & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & d_{n}
\end{array}\right)^{-1}=\left(\begin{array}{cccc}
d_{1}^{-1} & 0 & \ldots & 0 \\
0 & d_{2}^{-1} & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & d_{n}^{-1}
\end{array}\right)
$$

Inverting 2-by-2 matrices

Definition. The determinant of a 2×2 matrix $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ is $\operatorname{det} A=a d-b c$.

Theorem A matrix $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ is invertible if and only if $\operatorname{det} A \neq 0$.

If $\operatorname{det} A \neq 0$ then

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)^{-1}=\frac{1}{a d-b c}\left(\begin{array}{rr}
d & -b \\
-c & a
\end{array}\right) .
$$

Problem. Solve a system $\left\{\begin{array}{l}4 x+3 y=5, \\ 3 x+2 y=-1 .\end{array}\right.$
This system is equivalent to a matrix equation

$$
\left(\begin{array}{ll}
4 & 3 \\
3 & 2
\end{array}\right)\binom{x}{y}=\binom{5}{-1} .
$$

Let $A=\left(\begin{array}{ll}4 & 3 \\ 3 & 2\end{array}\right)$. We have $\operatorname{det} A=-1 \neq 0$.
Hence A is invertible. Let's multiply both sides of the matrix equation by A^{-1} from the left:

$$
\begin{gathered}
\left(\begin{array}{ll}
4 & 3 \\
3 & 2
\end{array}\right)^{-1}\left(\begin{array}{ll}
4 & 3 \\
3 & 2
\end{array}\right)\binom{x}{y}=\left(\begin{array}{ll}
4 & 3 \\
3 & 2
\end{array}\right)^{-1}\binom{5}{-1} \\
\binom{x}{y}=\left(\begin{array}{ll}
4 & 3 \\
3 & 2
\end{array}\right)^{-1}\binom{5}{-1}=\frac{1}{-1}\left(\begin{array}{rr}
2 & -3 \\
-3 & 4
\end{array}\right)\binom{5}{-1}=\binom{-13}{19}
\end{gathered}
$$

System of n linear equations in n variables:

$$
\left\{\begin{array}{c}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}=b_{2} \\
\cdots \cdots \\
a_{n 1} x_{1}+a_{n 2} x_{2}+\cdots+a_{n n} x_{n}=b_{n}
\end{array} \Longleftrightarrow A \mathbf{x}=\mathbf{b}\right.
$$

where
$A=\left(\begin{array}{cccc}a_{11} & a_{12} & \ldots & a_{1 n} \\ a_{21} & a_{22} & \ldots & a_{2 n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n 1} & a_{n 2} & \ldots & a_{n n}\end{array}\right), \quad \mathbf{x}=\left(\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{n}\end{array}\right), \quad \mathbf{b}=\left(\begin{array}{c}b_{1} \\ b_{2} \\ \vdots \\ b_{n}\end{array}\right)$.
Theorem If the matrix A is invertible then the system has a unique solution, which is $\mathbf{x}=A^{-1} \mathbf{b}$.

Fundamental results on inverse matrices

Theorem 1 Given a square matrix A, the following are equivalent:
(i) A is invertible;
(ii) $\mathbf{x}=\mathbf{0}$ is the only solution of the matrix equation $A \mathbf{x}=\mathbf{0}$;
(iii) the row echelon form of A has no zero rows;
(iv) the reduced row echelon form of A is the identity matrix.

Theorem 2 Suppose that a sequence of elementary row operations converts a matrix A into the identity matrix.

Then the same sequence of operations converts the identity matrix into the inverse matrix A^{-1}.

Theorem 3 For any $n \times n$ matrices A and B,

$$
B A=I \Longleftrightarrow A B=I
$$

Row echelon form of a square matrix:

noninvertible case
invertible case

Example. $\quad A=\left(\begin{array}{rrr}3 & -2 & 0 \\ 1 & 0 & 1 \\ -2 & 3 & 0\end{array}\right)$.
To check whether A is invertible, we convert it to row echelon form.
Interchange the 1st row with the 2 nd row:
$\left(\begin{array}{rrr}1 & 0 & 1 \\ 3 & -2 & 0 \\ -2 & 3 & 0\end{array}\right)$
Add -3 times the 1st row to the 2nd row:
$\left(\begin{array}{rrr}1 & 0 & 1 \\ 0 & -2 & -3 \\ -2 & 3 & 0\end{array}\right)$

Add 2 times the 1st row to the 3 rd row:
$\left(\begin{array}{rrr}1 & 0 & 1 \\ 0 & -2 & -3 \\ 0 & 3 & 2\end{array}\right)$
Multiply the 2 nd row by $-1 / 2$:
$\left(\begin{array}{ccc}1 & 0 & 1 \\ 0 & 1 & 1.5 \\ 0 & 3 & 2\end{array}\right)$
Add -3 times the 2 nd row to the 3 rd row:
$\left(\begin{array}{ccc}1 & 0 & 1 \\ 0 & 1 & 1.5 \\ 0 & 0 & -2.5\end{array}\right)$

Multiply the 3rd row by $-2 / 5$:
$\left(\begin{array}{ccc}\boxed{1} & 0 & 1 \\ 0 & 1 & 1.5 \\ 0 & 0 & 1\end{array}\right)$
We already know that the matrix A is invertible.
Let's proceed towards reduced row echelon form.
Add $-3 / 2$ times the 3 rd row to the 2 nd row:
$\left(\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$
Add -1 times the 3rd row to the 1 st row:
$\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$

To obtain A^{-1}, we need to apply the following sequence of elementary row operations to the identity matrix:

- interchange the 1 st row with the 2 nd row,
- add -3 times the 1 st row to the 2 nd row,
- add 2 times the 1 st row to the 3 rd row,
- multiply the 2 nd row by $-1 / 2$,
- add -3 times the 2 nd row to the 3 rd row,
- multiply the 3 rd row by $-2 / 5$,
- add $-3 / 2$ times the 3 rd row to the 2 nd row,
- add -1 times the 3 rd row to the 1 st row.

A convenient way to compute the inverse matrix A^{-1} is to merge the matrices A and I into one 3×6 matrix $(A \mid I)$, and apply elementary row operations to this new matrix.
$A=\left(\begin{array}{rrr}3 & -2 & 0 \\ 1 & 0 & 1 \\ -2 & 3 & 0\end{array}\right), \quad I=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$
$(A \mid I)=\left(\begin{array}{rrr|rrr}3 & -2 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ -2 & 3 & 0 & 0 & 0 & 1\end{array}\right)$

$$
\left(\begin{array}{rrr|rrr}
3 & -2 & 0 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 \\
-2 & 3 & 0 & 0 & 0 & 1
\end{array}\right)
$$

Interchange the 1st row with the 2 nd row:

$$
\left(\begin{array}{rrr|rrr}
1 & 0 & 1 & 0 & 1 & 0 \\
3 & -2 & 0 & 1 & 0 & 0 \\
-2 & 3 & 0 & 0 & 0 & 1
\end{array}\right)
$$

Add -3 times the 1 st row to the 2 nd row:

$$
\left(\begin{array}{rrr|rrr}
1 & 0 & 1 & 0 & 1 & 0 \\
0 & -2 & -3 & 1 & -3 & 0 \\
-2 & 3 & 0 & 0 & 0 & 1
\end{array}\right)
$$

$\left(\begin{array}{rrr|rrr}1 & 0 & 1 & 0 & 1 & 0 \\ 0 & -2 & -3 & 1 & -3 & 0 \\ -2 & 3 & 0 & 0 & 0 & 1\end{array}\right)$
Add 2 times the 1 st row to the 3 rd row:
$\left(\begin{array}{rrr|rrr}1 & 0 & 1 & 0 & 1 & 0 \\ 0 & -2 & -3 & 1 & -3 & 0 \\ 0 & 3 & 2 & 0 & 2 & 1\end{array}\right)$
Multiply the 2 nd row by $-1 / 2$:

$$
\left(\begin{array}{ccc|ccc}
1 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 1.5 & -0.5 & 1.5 & 0 \\
0 & 3 & 2 & 0 & 2 & 1
\end{array}\right)
$$

$$
\left(\begin{array}{ccc|ccc}
1 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 1.5 & -0.5 & 1.5 & 0 \\
0 & 3 & 2 & 0 & 2 & 1
\end{array}\right)
$$

Add -3 times the 2nd row to the 3rd row:
$\left(\begin{array}{rrr|rrr}1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1.5 & -0.5 & 1.5 & 0 \\ 0 & 0 & -2.5 & 1.5 & -2.5 & 1\end{array}\right)$
Multiply the 3rd row by $-2 / 5$:
$\left(\begin{array}{ccc|ccc}1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1.5 & -0.5 & 1.5 & 0 \\ 0 & 0 & 1 & -0.6 & 1 & -0.4\end{array}\right)$
$\left(\begin{array}{ccc|ccc}1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1.5 & -0.5 & 1.5 & 0 \\ 0 & 0 & 1 & -0.6 & 1 & -0.4\end{array}\right)$
Add $-3 / 2$ times the 3 rd row to the 2 nd row:
$\left(\begin{array}{ccc|ccc}1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0.4 & 0 & 0.6 \\ 0 & 0 & 1 & -0.6 & 1 & -0.4\end{array}\right)$
Add -1 times the 3 rd row to the 1 st row:
$\left(\begin{array}{rrr|rrr}1 & 0 & 0 & 0.6 & 0 & 0.4 \\ 0 & 1 & 0 & 0.4 & 0 & 0.6 \\ 0 & 0 & 1 & -0.6 & 1 & -0.4\end{array}\right)$

Thus

$$
\left(\begin{array}{rrr}
3 & -2 & 0 \\
1 & 0 & 1 \\
-2 & 3 & 0
\end{array}\right)^{-1}=\left(\begin{array}{rrr}
\frac{3}{5} & 0 & \frac{2}{5} \\
\frac{2}{5} & 0 & \frac{3}{5} \\
-\frac{3}{5} & 1 & -\frac{2}{5}
\end{array}\right) .
$$

That is,

$$
\begin{aligned}
& \left(\begin{array}{rrr}
3 & -2 & 0 \\
1 & 0 & 1 \\
-2 & 3 & 0
\end{array}\right)\left(\begin{array}{rrr}
\frac{3}{5} & 0 & \frac{2}{5} \\
\frac{2}{5} & 0 & \frac{3}{5} \\
-\frac{3}{5} & 1 & -\frac{2}{5}
\end{array}\right)=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right), \\
& \left(\begin{array}{rrr}
\frac{3}{5} & 0 & \frac{2}{5} \\
\frac{2}{5} & 0 & \frac{3}{5} \\
-\frac{3}{5} & 1 & -\frac{2}{5}
\end{array}\right)\left(\begin{array}{rrr}
3 & -2 & 0 \\
1 & 0 & 1 \\
-2 & 3 & 0
\end{array}\right)=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) .
\end{aligned}
$$

Why does it work?

$$
\begin{gathered}
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right)=\left(\begin{array}{rrr}
a_{1} & a_{2} & a_{3} \\
2 b_{1} & 2 b_{2} & 2 b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right), \\
\left(\begin{array}{lll}
1 & 0 & 0 \\
3 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right)=\left(\begin{array}{ccc}
a_{1} & a_{2} & a_{3} \\
b_{1}+3 a_{1} & b_{2}+3 a_{2} & b_{3}+3 a_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right), \\
\\
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)\left(\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right)=\left(\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
c_{1} & c_{2} & c_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right) .
\end{gathered}
$$

Proposition Any elementary row operation can be simulated as left multiplication by a certain matrix.

Assume that a square matrix A can be converted into the identity matrix by a sequence of elementary row operations. Then $B_{k} B_{k-1} \ldots B_{2} B_{1} A=I$, where $B_{1}, B_{2}, \ldots, B_{k}$ are matrices corresponding to those operations.

Applying the same sequence of operations to the identity matrix, we obtain the matrix

$$
B=B_{k} B_{k-1} \ldots B_{2} B_{1} I=B_{k} B_{k-1} \ldots B_{2} B_{1} .
$$

Thus $B A=I$, which implies that $B=A^{-1}$.

Determinants

Determinant is a scalar assigned to each square matrix.
Notation. The determinant of a matrix $A=\left(a_{i j}\right)_{1 \leq i, j \leq n}$ is denoted $\operatorname{det} A$ or

$$
\left|\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \ldots & a_{n n}
\end{array}\right| .
$$

Principal property: $\operatorname{det} A=0$ if and only if the matrix A is not invertible.

Definition in low dimensions

Definition. $\operatorname{det}(a)=a, \quad\left|\begin{array}{ll}a & b \\ c & d\end{array}\right|=a d-b c$, $\left|\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right|=\begin{array}{r}11 \\ a_{22} a_{33}+a_{12} a_{23} a_{31}+a_{13} a_{21} a_{32}- \\ \\ -a_{13} a_{22} a_{31}-a_{12} a_{21} a_{33}-a_{11} a_{23} a_{32} .\end{array}$
$+:\left(\begin{array}{ccc}* * & * & * \\ * & * & * \\ * & * & *\end{array}\right),\left(\begin{array}{ccc}* & * & * \\ * & * & * \\ * & * & *\end{array}\right),\left(\begin{array}{ccc}* & * & * \\ * & * & * \\ * & * & *\end{array}\right)$.
$-:\left(\begin{array}{ccc}* & * & * \\ * & * & * \\ * & * & *\end{array}\right),\left(\begin{array}{ccc}* & * & * \\ * * & * & * \\ * & * & *\end{array}\right),\left(\begin{array}{ccc}* & * & * \\ * & * & * \\ * & * & *\end{array}\right)$.

Examples: 2×2 matrices

$$
\begin{aligned}
& \left|\begin{array}{rr}
1 & 0 \\
0 & 1
\end{array}\right|=1, \quad\left|\begin{array}{rr}
3 & 0 \\
0 & -4
\end{array}\right|=-12, \\
& \left|\begin{array}{rr}
-2 & 5 \\
0 & 3
\end{array}\right|=-6, \quad\left|\begin{array}{ll}
7 & 0 \\
5 & 2
\end{array}\right|=14, \\
& \left|\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right|=1, \quad\left|\begin{array}{ll}
0 & 0 \\
4 & 1
\end{array}\right|=0, \\
& \left|\begin{array}{ll}
-1 & 3 \\
-1 & 3
\end{array}\right|=0, \quad\left|\begin{array}{ll}
2 & 1 \\
8 & 4
\end{array}\right|=0,
\end{aligned}
$$

$$
\begin{aligned}
& \left|\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right|=\begin{array}{c}
\\
a_{11} a_{22} a_{33}+a_{12} a_{23} a_{31}+a_{13} a_{21} a_{32}- \\
-a_{13} a_{22} a_{31}-a_{12} a_{21} a_{33}-a_{11} a_{23} a_{32} .
\end{array} \\
& \left(\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right) \rightarrow\left(\begin{array}{lll|ll}
a_{11} & a_{12} & a_{13} & a_{11} & a_{12} \\
a_{21} & a_{22} & a_{23} & a_{21} & a_{22} \\
a_{31} & a_{32} & a_{33} & a_{31} & a_{32}
\end{array}\right) \\
& +\left(\begin{array}{ccc|cc}
\hline 1 & 2 & 3 & * & * \\
* & 1 & 2 & 3 & * \\
* & * & 1 & 2 & 3
\end{array}\right) \quad-\left(\begin{array}{ccc|c|cc}
* & * & 1 & 2 & 3 \\
* & 1 & 2 & 3 & * \\
1 & 2 & 3 & * & *
\end{array}\right)
\end{aligned}
$$

This rule works only for 3×3 matrices!

Examples: 3×3 matrices

$$
\begin{aligned}
& \left|\begin{array}{rrr}
3 & -2 & 0 \\
1 & 0 & 1 \\
-2 & 3 & 0
\end{array}\right|=3 \cdot 0 \cdot 0+(-2) \cdot 1 \cdot(-2)+0 \cdot 1 \cdot 3- \\
& -0 \cdot 0 \cdot(-2)-(-2) \cdot 1 \cdot 0-3 \cdot 1 \cdot 3=4-9=-5,
\end{aligned}
$$

$$
\left|\begin{array}{lll}
1 & 4 & 6 \\
0 & 2 & 5 \\
0 & 0 & 3
\end{array}\right|=1 \cdot 2 \cdot 3+4 \cdot 5 \cdot 0+6 \cdot 0 \cdot 0-
$$

$$
-6 \cdot 2 \cdot 0-4 \cdot 0 \cdot 3-1 \cdot 5 \cdot 0=1 \cdot 2 \cdot 3=6
$$

