MATH 311-504
 Topics in Applied Mathematics

Lecture 12:
 Evaluation of determinants. Cross product.

Determinant is a scalar assigned to each square matrix.
Notation. The determinant of a matrix
$A=\left(a_{i j}\right)_{1 \leq i, j \leq n}$ is denoted $\operatorname{det} A$ or

$$
\left|\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \ldots & a_{n n}
\end{array}\right|
$$

Principal property: $\operatorname{det} A=0$ if and only if the matrix A is not invertible.

Definition in low dimensions

Definition. $\operatorname{det}(a)=a, \quad\left|\begin{array}{ll}a & b \\ c & d\end{array}\right|=a d-b c$, $\left|\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right|=\begin{array}{r}11 \\ a_{22} a_{33}+a_{12} a_{23} a_{31}+a_{13} a_{21} a_{32}- \\ \\ -a_{13} a_{22} a_{31}-a_{12} a_{21} a_{33}-a_{11} a_{23} a_{32} .\end{array}$
$+:\left(\begin{array}{ccc}* * & * & * \\ * & * & * \\ * & * & *\end{array}\right),\left(\begin{array}{ccc}* & * & * \\ * & * & * \\ * & * & *\end{array}\right),\left(\begin{array}{ccc}* & * & * \\ * & * & * \\ * & * & *\end{array}\right)$.
$-:\left(\begin{array}{ccc}* & * & * \\ * & * & * \\ * & * & *\end{array}\right),\left(\begin{array}{ccc}* & * & * \\ * * & * & * \\ * & * & *\end{array}\right),\left(\begin{array}{ccc}* & * & * \\ * & * & * \\ * & * & *\end{array}\right)$.

Properties of determinants

Determinants and elementary row operations:

- if a row of a matrix is multiplied by a scalar r, the determinant is also multiplied by r;
- if we add a row of a matrix multiplied by a scalar to another row, the determinant remains the same;
- if we interchange two rows of a matrix, the determinant changes its sign.

Properties of determinants

Tests for non-invertibility:

- if a matrix A has a zero row then $\operatorname{det} A=0$;
- if a matrix A has two identical rows then $\operatorname{det} A=0$;
- if a matrix has two proportional rows then $\operatorname{det} A=0$.

Properties of determinants

Special matrices:

- $\operatorname{det} I=1$;
- the determinant of a diagonal matrix is equal to the product of its diagonal entries;
- the determinant of an upper triangular matrix is equal to the product of its diagonal entries.

Properties of determinants

Determinant of the transpose:

- If A is a square matrix then $\operatorname{det} A^{T}=\operatorname{det} A$.

Columns vs. rows:

- if one column of a matrix is multiplied by a scalar, the determinant is multiplied by the same scalar;
- adding a scalar multiple of one column to another does not change the determinant;
- interchanging two columns of a matrix changes the sign of its determinant;
- if a matrix A has a zero column or two proportional columns then $\operatorname{det} A=0$.

Properties of determinants

Determinants and matrix multiplication:

- if A and B are $n \times n$ matrices then

$$
\operatorname{det}(A B)=\operatorname{det} A \cdot \operatorname{det} B ;
$$

- if A and B are $n \times n$ matrices then

$$
\operatorname{det}(A B)=\operatorname{det}(B A)
$$

- if A is an invertible matrix then

$$
\operatorname{det}\left(A^{-1}\right)=(\operatorname{det} A)^{-1}
$$

Determinants and scalar multiplication:

- if A is an $n \times n$ matrix and $r \in \mathbb{R}$ then

$$
\operatorname{det}(r A)=r^{n} \operatorname{det} A
$$

Examples

$$
X=\left(\begin{array}{rrr}
-1 & 2 & 1 \\
0 & 2 & -2 \\
0 & 0 & -3
\end{array}\right), \quad Y=\left(\begin{array}{rrr}
1 & 0 & 0 \\
-1 & 3 & 0 \\
2 & -2 & 1
\end{array}\right)
$$

$\operatorname{det} X=(-1) \cdot 2 \cdot(-3)=6, \quad \operatorname{det} Y=\operatorname{det} Y^{T}=3$, $\operatorname{det}(X Y)=6 \cdot 3=18, \quad \operatorname{det}(Y X)=3 \cdot 6=18$, $\operatorname{det}\left(Y^{-1}\right)=1 / 3, \quad \operatorname{det}\left(X Y^{-1}\right)=6 / 3=2$, $\operatorname{det}\left(X Y X^{-1}\right)=\operatorname{det} Y=3, \quad \operatorname{det}\left(X^{-1} Y^{-1} X Y\right)=1$, $\operatorname{det}(2 X)=2^{3} \operatorname{det} X=2^{3} \cdot 6=48$,
$\operatorname{det}\left(-3 X^{-1} Y\right)=(-3)^{3} \cdot 6^{-1} \cdot 3=-27 / 2$.

Row and column expansions

Given an $n \times n$ matrix $A=\left(a_{i j}\right)$, let $A_{i j}$ denote the $(n-1) \times(n-1)$ submatrix obtained by deleting the i th row and the j th column of A.

Theorem For any $1 \leq k, m \leq n$ we have that

$$
\begin{gathered}
\operatorname{det} A=\sum_{j=1}^{n}(-1)^{k+j} a_{k j} \operatorname{det} A_{k j}, \\
\quad(\text { expansion by } k t h \text { row })
\end{gathered}
$$

$$
\operatorname{det} A=\sum_{i=1}^{n}(-1)^{i+m} a_{i m} \operatorname{det} A_{i m}
$$

(expansion by mth column)

Signs for row/column expansions

$$
\left(\begin{array}{ccccc}
+ & - & + & - & \cdots \\
- & + & - & + & \cdots \\
+ & - & + & - & \cdots \\
- & + & - & + & \cdots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

Example. $A=\left(\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right)$.
Expansion by the 1st row:

$$
\left(\begin{array}{ccc}
1 & * & * \\
* & 5 & 6 \\
* & 8 & 9
\end{array}\right)\left(\begin{array}{ccc}
* & 2 & * \\
4 & * & 6 \\
7 & * & 9
\end{array}\right)\left(\begin{array}{ccc}
* & * & 3 \\
4 & 5 & * \\
7 & 8 & *
\end{array}\right)
$$

$\operatorname{det} A=1\left|\begin{array}{ll}5 & 6 \\ 8 & 9\end{array}\right|-2\left|\begin{array}{ll}4 & 6 \\ 7 & 9\end{array}\right|+3\left|\begin{array}{ll}4 & 5 \\ 7 & 8\end{array}\right|$
$=(5 \cdot 9-6 \cdot 8)-2(4 \cdot 9-6 \cdot 7)+3(4 \cdot 8-5 \cdot 7)=0$.

Example. $A=\left(\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right)$.
Expansion by the 2nd column:
$\left(\begin{array}{lll}* & 2 & * \\ 4 & * & 6 \\ 7 & * & 9\end{array}\right)\left(\begin{array}{ccc}1 & * & 3 \\ * & 5 & * \\ 7 & * & 9\end{array}\right)\left(\begin{array}{ccc}1 & * & 3 \\ 4 & * & 6 \\ * & 8 & *\end{array}\right)$
$\operatorname{det} A=-2\left|\begin{array}{ll}4 & 6 \\ 7 & 9\end{array}\right|+5\left|\begin{array}{ll}1 & 3 \\ 7 & 9\end{array}\right|-8\left|\begin{array}{ll}1 & 3 \\ 4 & 6\end{array}\right|$
$=-2(4 \cdot 9-6 \cdot 7)+5(1 \cdot 9-3 \cdot 7)-8(1 \cdot 6-3 \cdot 4)=0$.

Example. $\quad A=\left(\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right)$.
Subtract the 1st row from the 2nd row and from the 3 rd row:

$$
\left|\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right|=\left|\begin{array}{lll}
1 & 2 & 3 \\
3 & 3 & 3 \\
7 & 8 & 9
\end{array}\right|=\left|\begin{array}{lll}
1 & 2 & 3 \\
3 & 3 & 3 \\
6 & 6 & 6
\end{array}\right|=0
$$

since the last matrix has two proportional rows.

Another example. $B=\left(\begin{array}{ccc}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 13\end{array}\right)$.
First let's do some row reduction. Add -4 times the 1st row to the 2nd row:

$$
\left|\begin{array}{ccc}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 13
\end{array}\right|=\left|\begin{array}{rrr}
1 & 2 & 3 \\
0 & -3 & -6 \\
7 & 8 & 13
\end{array}\right|
$$

Add -7 times the 1st row to the 3rd row:

$$
\left|\begin{array}{rrr}
1 & 2 & 3 \\
0 & -3 & -6 \\
7 & 8 & 13
\end{array}\right|=\left|\begin{array}{rrr}
1 & 2 & 3 \\
0 & -3 & -6 \\
0 & -6 & -8
\end{array}\right|
$$

$$
\left|\begin{array}{rrc}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 13
\end{array}\right|=\left|\begin{array}{rrr}
1 & 2 & 3 \\
0 & -3 & -6 \\
0 & -6 & -8
\end{array}\right|
$$

Expand the determinant by the 1st column:

$$
\left|\begin{array}{rrr}
1 & 2 & 3 \\
0 & -3 & -6 \\
0 & -6 & -8
\end{array}\right|=1\left|\begin{array}{rr}
-3 & -6 \\
-6 & -8
\end{array}\right|
$$

Thus

$$
\begin{gathered}
\operatorname{det} B=\left|\begin{array}{ll}
-3 & -6 \\
-6 & -8
\end{array}\right|=(-3)\left|\begin{array}{rr}
1 & 2 \\
-6 & -8
\end{array}\right| \\
=(-3)(-2)\left|\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right|=(-3)(-2)(-2)=-12
\end{gathered}
$$

Determinants and linear dependence

Theorem For any n-by- n matrix A the following conditions are equivalent:

- $\operatorname{det} A=0$;
- A is not invertible;
- the matrix equation $A \mathbf{x}=\mathbf{0}$ has a nonzero solution $\mathbf{x} \in \mathbb{R}^{n}$;
- columns of A are linearly dependent vectors;
- rows of A are linearly dependent vectors.

Problem. Determine whether vectors
$\mathbf{v}_{1}=(1,2,3), \mathbf{v}_{2}=(4,5,6)$, and $\mathbf{v}_{3}=(7,8,13)$ are parallel to the same plane.

The vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ are parallel to the same plane if and only if they are linearly dependent.
Consider a 3×3 matrix V whose rows are vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$. We have

$$
\operatorname{det} V=\left|\begin{array}{ccc}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 13
\end{array}\right|=-12
$$

det $V \neq 0 \Longrightarrow$ the vectors are linearly independent \Longrightarrow the vectors are not parallel to the same plane

Cross product

Definition. Given two vectors $\mathbf{v}=\left(v_{1}, v_{2}, v_{3}\right)$ and $\mathbf{w}=\left(w_{1}, w_{2}, w_{3}\right)$ in \mathbb{R}^{3}, the cross product $\mathbf{v} \times \mathbf{w}$ is another vector in \mathbb{R}^{3} defined by

$$
\mathbf{v} \times \mathbf{w}=\left(v_{2} w_{3}-v_{3} w_{2}, v_{3} w_{1}-v_{1} w_{3}, v_{1} w_{2}-v_{2} w_{1}\right) .
$$

Using the standard basis $\mathbf{i}=(1,0,0), \mathbf{j}=(0,1,0)$, $\mathbf{k}=(0,0,1)$, the definition can be rewritten as
$\mathbf{v} \times \mathbf{w}=\left(v_{2} w_{3}-v_{3} w_{2}\right) \mathbf{i}+\left(v_{3} w_{1}-v_{1} w_{3}\right) \mathbf{j}+\left(v_{1} w_{2}-v_{2} w_{1}\right) \mathbf{k}$
$=\left|\begin{array}{ll}v_{2} & v_{3} \\ w_{2} & w_{3}\end{array}\right| \mathbf{i}-\left|\begin{array}{cc}v_{1} & v_{3} \\ w_{1} & w_{3}\end{array}\right| \mathbf{j}+\left|\begin{array}{cc}v_{1} & v_{2} \\ w_{1} & w_{2}\end{array}\right| \mathbf{k}=\left|\begin{array}{ccc}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ v_{1} & v_{2} & v_{3} \\ w_{1} & w_{2} & w_{3}\end{array}\right|$.

Proposition For any vectors $\mathbf{u}=\left(u_{1}, u_{2}, u_{3}\right)$, $\mathbf{v}=\left(v_{1}, v_{2}, v_{3}\right)$, and $\mathbf{w}=\left(w_{1}, w_{2}, w_{3}\right)$ in \mathbb{R}^{3},

$$
\mathbf{u} \cdot(\mathbf{v} \times \mathbf{w})=\left|\begin{array}{ccc}
u_{1} & u_{2} & u_{3} \\
v_{1} & v_{2} & v_{3} \\
w_{1} & w_{2} & w_{3}
\end{array}\right| .
$$

Indeed, since

$$
\mathbf{v} \times \mathbf{w}=\left|\begin{array}{cc}
v_{2} & v_{3} \\
w_{2} & w_{3}
\end{array}\right| \mathbf{i}-\left|\begin{array}{cc}
v_{1} & v_{3} \\
w_{1} & w_{3}
\end{array}\right| \mathbf{j}+\left|\begin{array}{cc}
v_{1} & v_{2} \\
w_{1} & w_{2}
\end{array}\right| \mathbf{k},
$$

it follows that
$\mathbf{u} \cdot(\mathbf{v} \times \mathbf{w})=u_{1}\left|\begin{array}{cc}v_{2} & v_{3} \\ w_{2} & w_{3}\end{array}\right|-u_{2}\left|\begin{array}{cc}v_{1} & v_{3} \\ w_{1} & w_{3}\end{array}\right|+u_{3}\left|\begin{array}{cc}v_{1} & v_{2} \\ w_{1} & w_{2}\end{array}\right|$.

Algebraic properties of the cross product:

- $\mathbf{x} \times \mathbf{y}$ is orthogonal to both \mathbf{x} and \mathbf{y}
- $y \times x=-x \times y$
(anticommutativity)
- $\mathbf{x} \times(\mathbf{y}+\mathbf{z})=\mathbf{x} \times \mathbf{y}+\mathbf{x} \times \mathbf{z} \quad$ (distributive law)
- $r(\mathbf{x} \times \mathbf{y})=(r \mathbf{x}) \times \mathbf{y}=\mathbf{x} \times(r \mathbf{y})$
- $\mathbf{x} \times(\mathbf{y} \times \mathbf{z})=(\mathbf{x} \cdot \mathbf{z}) \mathbf{y}-(\mathbf{x} \cdot \mathbf{y}) \mathbf{z}$
- In general, $(\mathbf{x} \times \mathbf{y}) \times \mathbf{z} \neq \mathbf{x} \times(\mathbf{y} \times \mathbf{z})$
- $(\mathbf{x} \times \mathbf{y}) \times \mathbf{z}+(\mathbf{y} \times \mathbf{z}) \times \mathbf{x}+(\mathbf{z} \times \mathbf{x}) \times \mathbf{y}=\mathbf{0}$
(Jacobi's identity)
$\bullet \mathbf{i} \times \mathbf{j}=\mathbf{k}, \mathbf{j} \times \mathbf{k}=\mathbf{i}, \quad \mathbf{k} \times \mathbf{i}=\mathbf{j}$

Geometric properties of the cross product:

- $\mathbf{x} \times \mathbf{y}$ is orthogonal to both \mathbf{x} and \mathbf{y}.
- If $\mathbf{x} \times \mathbf{y} \neq \mathbf{0}$ then the triple of vectors $\mathbf{x}, \mathbf{y}, \mathbf{x} \times \mathbf{y}$ obeys the same rule (right-hand or left-hand rule) as the standard basis $\mathbf{i}, \mathbf{j}, \mathbf{k}$.
- The area of the parallelogram with vectors \mathbf{x} and \mathbf{y} as adjacent sides is equal to $|\mathbf{x} \times \mathbf{y}|$. That is, $|\mathbf{x} \times \mathbf{y}|=|\mathbf{x}||\mathbf{y}| \sin \angle(\mathbf{x}, \mathbf{y})$.
- The area of the triangle with vectors \mathbf{x} and \mathbf{y} as adjacent sides is equal to $\frac{1}{2}|\mathbf{x} \times \mathbf{y}|$.
- The volume of the parallelepiped with vectors \mathbf{x}, \mathbf{y}, and \mathbf{z} as adjacent edges is equal to $|\mathbf{x} \cdot(\mathbf{y} \times \mathbf{z})|$.

Area of the grey parallelogram $=|\mathbf{y} \times \mathbf{z}|$.
Volume of the parallelepiped $=|\mathbf{x} \cdot(\mathbf{y} \times \mathbf{z})|$.
The triple $\mathbf{x}, \mathbf{y}, \mathbf{z}$ obeys the right-hand rule.

Problem. (i) Find volume of the parallelepiped with vectors $\mathbf{a}=(1,4,7), \mathbf{b}=(2,5,8)$, and $\mathbf{c}=(3,6,13)$ as adjacent edges.
(ii) Determine whether the triple $\mathbf{a}, \mathbf{b}, \mathbf{c}$ obeys the same hand rule as the standard basis $\mathbf{i}, \mathbf{j}, \mathbf{k}$.
$\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})=\left|\begin{array}{ccc}1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 13\end{array}\right|=\left|\begin{array}{ccc}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 13\end{array}\right|=-12$.
Volume of the parallelepiped $=|\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})|=12$.
Since $\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})<0$, the triple $\mathbf{a}, \mathbf{b}, \mathbf{c}$ does not obey the same hand rule as the triple $\mathbf{i}, \mathbf{j}, \mathbf{k}$.

Suppose Π is a plane in \mathbb{R}^{3} with a parametric representation $t_{1} \mathbf{v}+t_{2} \mathbf{w}+\mathbf{u}$, where
$\mathbf{u}=\left(u_{1}, u_{2}, u_{3}\right), \mathbf{v}=\left(v_{1}, v_{2}, v_{3}\right), \mathbf{w}=\left(w_{1}, w_{2}, w_{3}\right)$.
Recall that \mathbf{u} is a point in Π while \mathbf{v} and \mathbf{w} are vectors parallel to the plane. Then the vector $\mathbf{v} \times \mathbf{w}$ is orthogonal to the plane.
Therefore the plane Π is given by the equation $(\mathbf{x}-\mathbf{u}) \cdot(\mathbf{v} \times \mathbf{w})=0$ or

$$
\left|\begin{array}{ccc}
x-u_{1} & y-u_{2} & z-u_{3} \\
v_{1} & v_{2} & v_{3} \\
w_{1} & w_{2} & w_{3}
\end{array}\right|=0,
$$

where $\mathbf{x}=(x, y, z)$.

