
MATH 311-504

Topics in Applied Mathematics

Lecture 12:
Evaluation of determinants.

Cross product.



Determinant is a scalar assigned to each square matrix.

Notation. The determinant of a matrix
A = (aij)1≤i ,j≤n is denoted det A or
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Principal property: det A = 0 if and only if the
matrix A is not invertible.



Definition in low dimensions

Definition. det (a) = a,
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−a13a22a31 − a12a21a33 − a11a23a32.
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Properties of determinants

Determinants and elementary row operations:

• if a row of a matrix is multiplied by a scalar r ,
the determinant is also multiplied by r ;

• if we add a row of a matrix multiplied by a scalar
to another row, the determinant remains the same;

• if we interchange two rows of a matrix, the
determinant changes its sign.



Properties of determinants

Tests for non-invertibility:

• if a matrix A has a zero row then det A = 0;

• if a matrix A has two identical rows then
det A = 0;

• if a matrix has two proportional rows then
det A = 0.



Properties of determinants

Special matrices:

• det I = 1;

• the determinant of a diagonal matrix is equal to
the product of its diagonal entries;

• the determinant of an upper triangular matrix is
equal to the product of its diagonal entries.



Properties of determinants

Determinant of the transpose:

• If A is a square matrix then det AT = det A.

Columns vs. rows:

• if one column of a matrix is multiplied by a
scalar, the determinant is multiplied by the same
scalar;
• adding a scalar multiple of one column to

another does not change the determinant;
• interchanging two columns of a matrix changes

the sign of its determinant;
• if a matrix A has a zero column or two

proportional columns then det A = 0.



Properties of determinants

Determinants and matrix multiplication:

• if A and B are n×n matrices then

det(AB) = det A · det B ;

• if A and B are n×n matrices then

det(AB) = det(BA);

• if A is an invertible matrix then

det(A−1) = (det A)−1.

Determinants and scalar multiplication:

• if A is an n×n matrix and r ∈ R then

det(rA) = rn det A.



Examples

X =





−1 2 1
0 2 −2
0 0 −3



, Y =





1 0 0
−1 3 0

2 −2 1



.

det X = (−1) · 2 · (−3) = 6, det Y = det Y T = 3,

det(XY ) = 6 · 3 = 18, det(YX ) = 3 · 6 = 18,

det(Y −1) = 1/3, det(XY −1) = 6/3 = 2,

det(XYX−1) = det Y = 3, det(X−1Y −1XY ) = 1,

det(2X ) = 23 det X = 23 · 6 = 48,

det(−3X−1Y ) = (−3)3 · 6−1 · 3 = −27/2.



Row and column expansions

Given an n×n matrix A = (aij), let Aij denote the
(n − 1)×(n − 1) submatrix obtained by deleting the
ith row and the jth column of A.

Theorem For any 1 ≤ k , m ≤ n we have that

det A =
n

∑

j=1

(−1)k+jakj det Akj ,

(expansion by kth row)

det A =
n

∑

i=1

(−1)i+maim det Aim.

(expansion by mth column)



Signs for row/column expansions
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Example. A =





1 2 3
4 5 6
7 8 9



.

Expansion by the 1st row:
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= (5 · 9 − 6 · 8) − 2(4 · 9 − 6 · 7) + 3(4 · 8 − 5 · 7) = 0.



Example. A =





1 2 3
4 5 6
7 8 9



.

Expansion by the 2nd column:
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= −2(4 · 9 − 6 · 7) + 5(1 · 9 − 3 · 7) − 8(1 · 6 − 3 · 4) = 0.



Example. A =





1 2 3
4 5 6
7 8 9



.

Subtract the 1st row from the 2nd row and from
the 3rd row:
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since the last matrix has two proportional rows.



Another example. B =





1 2 3
4 5 6
7 8 13



.

First let’s do some row reduction.

Add −4 times the 1st row to the 2nd row:
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Add −7 times the 1st row to the 3rd row:
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∣

∣

∣

∣

∣

∣

1 2 3
0 −3 −6
0 −6 −8

∣

∣

∣

∣

∣

∣

= 1

∣

∣

∣

∣

−3 −6
−6 −8

∣

∣

∣

∣

Thus

det B =

∣

∣

∣

∣

−3 −6
−6 −8

∣

∣

∣

∣

= (−3)

∣

∣

∣

∣

1 2
−6 −8

∣

∣

∣

∣

= (−3)(−2)

∣

∣

∣

∣

1 2
3 4

∣

∣

∣

∣

= (−3)(−2)(−2) = −12



Determinants and linear dependence

Theorem For any n-by-n matrix A the following
conditions are equivalent:

• det A = 0;

• A is not invertible;

• the matrix equation Ax = 0 has a nonzero
solution x ∈ R

n;

• columns of A are linearly dependent vectors;

• rows of A are linearly dependent vectors.



Problem. Determine whether vectors
v1 = (1, 2, 3), v2 = (4, 5, 6), and v3 = (7, 8, 13)
are parallel to the same plane.

The vectors v1, v2, v3 are parallel to the same plane
if and only if they are linearly dependent.

Consider a 3×3 matrix V whose rows are vectors
v1, v2, v3. We have

det V =
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= −12.

det V 6= 0 =⇒ the vectors are linearly independent
=⇒ the vectors are not parallel to the same plane



Cross product

Definition. Given two vectors v = (v1, v2, v3) and
w = (w1, w2, w3) in R

3, the cross product v × w
is another vector in R

3 defined by

v × w = (v2w3−v3w2, v3w1−v1w3, v1w2−v2w1).

Using the standard basis i = (1, 0, 0), j = (0, 1, 0),
k = (0, 0, 1), the definition can be rewritten as

v × w = (v2w3−v3w2)i + (v3w1−v1w3)j + (v1w2−v2w1)k
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Proposition For any vectors u = (u1, u2, u3),
v = (v1, v2, v3), and w = (w1, w2, w3) in R

3,

u · (v × w) =
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Algebraic properties of the cross product:

• x × y is orthogonal to both x and y

• y × x = −x × y (anticommutativity)

• x × (y + z) = x × y + x × z (distributive law)

• r(x × y) = (rx) × y = x × (ry)

• x × (y × z) = (x · z)y − (x · y)z

• In general, (x × y) × z 6= x × (y × z)

• (x × y) × z + (y × z) × x + (z × x) × y = 0
(Jacobi’s identity)

• i × j = k, j × k = i, k × i = j



Geometric properties of the cross product:

• x × y is orthogonal to both x and y.

• If x× y 6= 0 then the triple of vectors x, y, x× y
obeys the same rule (right-hand or left-hand rule) as
the standard basis i, j, k.

• The area of the parallelogram with vectors x and
y as adjacent sides is equal to |x × y|. That is,
|x × y| = |x| |y| sin ∠(x, y).

• The area of the triangle with vectors x and y as
adjacent sides is equal to 1

2
|x × y|.

• The volume of the parallelepiped with vectors x,
y, and z as adjacent edges is equal to |x · (y × z)|.



x

y
z

Area of the grey parallelogram = |y × z|.

Volume of the parallelepiped = |x · (y × z)|.

The triple x, y, z obeys the right-hand rule.



Problem. (i) Find volume of the parallelepiped
with vectors a = (1, 4, 7), b = (2, 5, 8), and
c = (3, 6, 13) as adjacent edges.
(ii) Determine whether the triple a,b, c obeys the

same hand rule as the standard basis i, j, k.

a · (b × c) =
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Volume of the parallelepiped = |a · (b × c)| = 12.

Since a · (b × c) < 0, the triple a,b, c does not
obey the same hand rule as the triple i, j, k.



Suppose Π is a plane in R
3 with a parametric

representation t1v + t2w + u, where
u = (u1, u2, u3), v = (v1, v2, v3), w = (w1, w2, w3).

Recall that u is a point in Π while v and w are
vectors parallel to the plane. Then the vector v × w
is orthogonal to the plane.

Therefore the plane Π is given by the equation
(x − u) · (v × w) = 0 or
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where x = (x , y , z).


