MATH 311-504 Topics in Applied Mathematics Lecture 12: Evaluation of determinants. Cross product.

Determinant is a scalar assigned to each square matrix.

Notation. The determinant of a matrix $A = (a_{ij})_{1 \le i,j \le n}$ is denoted det A or

a_{11}	a ₁₂		a_{1n}	
a ₂₁	a 22	•••	a 2n	
:	÷	•••	÷	•
<i>a</i> _{n1}	a _{n2}	•••	a _{nn}	

Principal property: det A = 0 if and only if the matrix A is not invertible.

Definition in low dimensions

Definition. det (a) = a,
$$\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$$
,
 $\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} - a_{13}a_{22}a_{31} - a_{12}a_{21}a_{33} - a_{11}a_{23}a_{32}.$

÷.

т

Determinants and elementary row operations:

• if a row of a matrix is multiplied by a scalar r, the determinant is also multiplied by r;

• if we add a row of a matrix multiplied by a scalar to another row, the determinant remains the same;

• if we interchange two rows of a matrix, the determinant changes its sign.

Tests for non-invertibility:

- if a matrix A has a zero row then $\det A = 0$;
- if a matrix A has two identical rows then $\det A = 0$;
- if a matrix has two proportional rows then $\det A = 0$.

Special matrices:

• det I = 1;

• the determinant of a diagonal matrix is equal to the product of its diagonal entries;

• the determinant of an upper triangular matrix is equal to the product of its diagonal entries.

Determinant of the transpose:

• If A is a square matrix then det $A^T = \det A$.

Columns vs. rows:

• if one column of a matrix is multiplied by a scalar, the determinant is multiplied by the same scalar;

- adding a scalar multiple of one column to another does not change the determinant;
- interchanging two columns of a matrix changes the sign of its determinant;

• if a matrix A has a zero column or two proportional columns then det A = 0.

Determinants and matrix multiplication:

- if A and B are $n \times n$ matrices then $det(AB) = det A \cdot det B;$
- if A and B are n×n matrices then det(AB) = det(BA);
- if A is an invertible matrix then $det(A^{-1}) = (det A)^{-1}.$

Determinants and scalar multiplication:

• if A is an $n \times n$ matrix and $r \in \mathbb{R}$ then $\det(rA) = r^n \det A$.

Examples

$$X = \begin{pmatrix} -1 & 2 & 1 \\ 0 & 2 & -2 \\ 0 & 0 & -3 \end{pmatrix}, \quad Y = \begin{pmatrix} 1 & 0 & 0 \\ -1 & 3 & 0 \\ 2 & -2 & 1 \end{pmatrix}.$$

det
$$X = (-1) \cdot 2 \cdot (-3) = 6$$
, det $Y = \det Y^T = 3$,
det $(XY) = 6 \cdot 3 = 18$, det $(YX) = 3 \cdot 6 = 18$,
det $(Y^{-1}) = 1/3$, det $(XY^{-1}) = 6/3 = 2$,
det $(XYX^{-1}) = \det Y = 3$, det $(X^{-1}Y^{-1}XY) = 1$,
det $(2X) = 2^3 \det X = 2^3 \cdot 6 = 48$,
det $(-3X^{-1}Y) = (-3)^3 \cdot 6^{-1} \cdot 3 = -27/2$.

Row and column expansions

Given an $n \times n$ matrix $A = (a_{ij})$, let A_{ij} denote the $(n-1) \times (n-1)$ submatrix obtained by deleting the *i*th row and the *j*th column of A.

Theorem For any $1 \le k, m \le n$ we have that

$$\det A = \sum_{j=1}^{n} (-1)^{k+j} a_{kj} \det A_{kj},$$

(expansion by kth row)
 $\det A = \sum_{i=1}^{n} (-1)^{i+m} a_{im} \det A_{im}.$
(expansion by mth column)

Signs for row/column expansions

Example.
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}$$
.

Expansion by the 1st row:

$$\begin{pmatrix} \boxed{1} & * & * \\ * & 5 & 6 \\ * & 8 & 9 \end{pmatrix} \begin{pmatrix} * & \boxed{2} & * \\ 4 & * & 6 \\ 7 & * & 9 \end{pmatrix} \begin{pmatrix} * & * & \boxed{3} \\ 4 & 5 & * \\ 7 & 8 & * \end{pmatrix}$$
$$\det A = 1 \begin{vmatrix} 5 & 6 \\ 8 & 9 \end{vmatrix} - 2 \begin{vmatrix} 4 & 6 \\ 7 & 9 \end{vmatrix} + 3 \begin{vmatrix} 4 & 5 \\ 7 & 8 \end{vmatrix}$$
$$= (5 \cdot 9 - 6 \cdot 8) - 2(4 \cdot 9 - 6 \cdot 7) + 3(4 \cdot 8 - 5 \cdot 7) = 0.$$

Example.
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}$$
.

Expansion by the 2nd column:

$$\begin{pmatrix} * & 2 & * \\ 4 & * & 6 \\ 7 & * & 9 \end{pmatrix} \begin{pmatrix} 1 & * & 3 \\ * & 5 & * \\ 7 & * & 9 \end{pmatrix} \begin{pmatrix} 1 & * & 3 \\ 4 & * & 6 \\ * & 8 & * \end{pmatrix}$$
$$det A = -2 \begin{vmatrix} 4 & 6 \\ 7 & 9 \end{vmatrix} + 5 \begin{vmatrix} 1 & 3 \\ 7 & 9 \end{vmatrix} - 8 \begin{vmatrix} 1 & 3 \\ 4 & 6 \end{vmatrix}$$
$$= -2(4 \cdot 9 - 6 \cdot 7) + 5(1 \cdot 9 - 3 \cdot 7) - 8(1 \cdot 6 - 3 \cdot 4) = 0.$$

Example.
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}$$
.

Subtract the 1st row from the 2nd row and from the 3rd row:

$$\begin{vmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{vmatrix} = \begin{vmatrix} 1 & 2 & 3 \\ 3 & 3 & 3 \\ 7 & 8 & 9 \end{vmatrix} = \begin{vmatrix} 1 & 2 & 3 \\ 3 & 3 & 3 \\ 6 & 6 & 6 \end{vmatrix} = 0$$

since the last matrix has two proportional rows.

Another example.
$$B = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 13 \end{pmatrix}$$

First let's do some row reduction. Add -4 times the 1st row to the 2nd row:

$$\begin{vmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 13 \end{vmatrix} = \begin{vmatrix} 1 & 2 & 3 \\ 0 & -3 & -6 \\ 7 & 8 & 13 \end{vmatrix}$$

Add -7 times the 1st row to the 3rd row:

$$\begin{vmatrix} 1 & 2 & 3 \\ 0 & -3 & -6 \\ 7 & 8 & 13 \end{vmatrix} = \begin{vmatrix} 1 & 2 & 3 \\ 0 & -3 & -6 \\ 0 & -6 & -8 \end{vmatrix}$$

$$\begin{vmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 13 \end{vmatrix} = \begin{vmatrix} 1 & 2 & 3 \\ 0 & -3 & -6 \\ 0 & -6 & -8 \end{vmatrix}$$

Expand the determinant by the 1st column:

$$egin{array}{cc|c} 1 & 2 & 3 \ 0 & -3 & -6 \ 0 & -6 & -8 \ \end{array} = 1 egin{array}{cc|c} -3 & -6 \ -6 & -8 \ \end{array}$$

Thus

$$\det B = \begin{vmatrix} -3 & -6 \\ -6 & -8 \end{vmatrix} = (-3) \begin{vmatrix} 1 & 2 \\ -6 & -8 \end{vmatrix}$$
$$= (-3)(-2) \begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix} = (-3)(-2)(-2) = -12$$

Determinants and linear dependence

Theorem For any *n*-by-*n* matrix *A* the following conditions are equivalent:

- det A = 0;
- A is not invertible;

• the matrix equation $A\mathbf{x} = \mathbf{0}$ has a nonzero solution $\mathbf{x} \in \mathbb{R}^n$;

- columns of A are linearly dependent vectors;
- rows of *A* are linearly dependent vectors.

Problem. Determine whether vectors $\mathbf{v}_1 = (1, 2, 3)$, $\mathbf{v}_2 = (4, 5, 6)$, and $\mathbf{v}_3 = (7, 8, 13)$ are parallel to the same plane.

The vectors $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ are parallel to the same plane if and only if they are linearly dependent.

Consider a 3×3 matrix V whose rows are vectors $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$. We have

det
$$V = \begin{vmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 13 \end{vmatrix} = -12.$$

det $V \neq 0 \implies$ the vectors are linearly independent \implies the vectors are not parallel to the same plane

Cross product

Definition. Given two vectors $\mathbf{v} = (v_1, v_2, v_3)$ and $\mathbf{w} = (w_1, w_2, w_3)$ in \mathbb{R}^3 , the **cross product** $\mathbf{v} \times \mathbf{w}$ is another vector in \mathbb{R}^3 defined by

$$\mathbf{v} \times \mathbf{w} = (v_2 w_3 - v_3 w_2, v_3 w_1 - v_1 w_3, v_1 w_2 - v_2 w_1).$$

Using the standard basis $\mathbf{i} = (1, 0, 0)$, $\mathbf{j} = (0, 1, 0)$, $\mathbf{k} = (0, 0, 1)$, the definition can be rewritten as $\mathbf{v} \times \mathbf{w} = (v_2 w_3 - v_3 w_2)\mathbf{i} + (v_3 w_1 - v_1 w_3)\mathbf{j} + (v_1 w_2 - v_2 w_1)\mathbf{k}$ $= \begin{vmatrix} v_2 & v_3 \\ w_2 & w_3 \end{vmatrix} \mathbf{i} - \begin{vmatrix} v_1 & v_3 \\ w_1 & w_3 \end{vmatrix} \mathbf{j} + \begin{vmatrix} v_1 & v_2 \\ w_1 & w_2 \end{vmatrix} \mathbf{k} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ v_1 & v_2 & v_3 \\ w_1 & w_2 & w_3 \end{vmatrix}$. **Proposition** For any vectors $\mathbf{u} = (u_1, u_2, u_3)$, $\mathbf{v} = (v_1, v_2, v_3)$, and $\mathbf{w} = (w_1, w_2, w_3)$ in \mathbb{R}^3 , $\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w}) = \begin{vmatrix} u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \\ w_1 & w_2 & w_3 \end{vmatrix}$.

Indeed, since

$$\mathbf{v} \times \mathbf{w} = \begin{vmatrix} v_2 & v_3 \\ w_2 & w_3 \end{vmatrix} \mathbf{i} - \begin{vmatrix} v_1 & v_3 \\ w_1 & w_3 \end{vmatrix} \mathbf{j} + \begin{vmatrix} v_1 & v_2 \\ w_1 & w_2 \end{vmatrix} \mathbf{k},$$

it follows that

$$\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w}) = u_1 \begin{vmatrix} v_2 & v_3 \\ w_2 & w_3 \end{vmatrix} - u_2 \begin{vmatrix} v_1 & v_3 \\ w_1 & w_3 \end{vmatrix} + u_3 \begin{vmatrix} v_1 & v_2 \\ w_1 & w_2 \end{vmatrix}$$

Algebraic properties of the cross product:

- $\mathbf{x} \times \mathbf{y}$ is orthogonal to both \mathbf{x} and \mathbf{y}
- $\mathbf{y} \times \mathbf{x} = -\mathbf{x} \times \mathbf{y}$ (anticommutativity)
- $\mathbf{x} \times (\mathbf{y} + \mathbf{z}) = \mathbf{x} \times \mathbf{y} + \mathbf{x} \times \mathbf{z}$ (distributive law)

•
$$r(\mathbf{x} \times \mathbf{y}) = (r\mathbf{x}) \times \mathbf{y} = \mathbf{x} \times (r\mathbf{y})$$

- $\mathbf{x} \times (\mathbf{y} \times \mathbf{z}) = (\mathbf{x} \cdot \mathbf{z})\mathbf{y} (\mathbf{x} \cdot \mathbf{y})\mathbf{z}$
- In general, $(\mathbf{x} \times \mathbf{y}) \times \mathbf{z} \neq \mathbf{x} \times (\mathbf{y} \times \mathbf{z})$
- $(\mathbf{x} \times \mathbf{y}) \times \mathbf{z} + (\mathbf{y} \times \mathbf{z}) \times \mathbf{x} + (\mathbf{z} \times \mathbf{x}) \times \mathbf{y} = \mathbf{0}$ (Jacobi's identity)
- $\mathbf{i} \times \mathbf{j} = \mathbf{k}$, $\mathbf{j} \times \mathbf{k} = \mathbf{i}$, $\mathbf{k} \times \mathbf{i} = \mathbf{j}$

Geometric properties of the cross product:

• $\mathbf{x} \times \mathbf{y}$ is orthogonal to both \mathbf{x} and \mathbf{y} .

• If $\mathbf{x} \times \mathbf{y} \neq \mathbf{0}$ then the triple of vectors \mathbf{x} , \mathbf{y} , $\mathbf{x} \times \mathbf{y}$ obeys the same rule (right-hand or left-hand rule) as the standard basis \mathbf{i} , \mathbf{j} , \mathbf{k} .

• The area of the parallelogram with vectors \mathbf{x} and \mathbf{y} as adjacent sides is equal to $|\mathbf{x} \times \mathbf{y}|$. That is, $|\mathbf{x} \times \mathbf{y}| = |\mathbf{x}| |\mathbf{y}| \sin \angle (\mathbf{x}, \mathbf{y})$.

• The area of the triangle with vectors \mathbf{x} and \mathbf{y} as adjacent sides is equal to $\frac{1}{2}|\mathbf{x} \times \mathbf{y}|$.

• The volume of the parallelepiped with vectors \mathbf{x} , \mathbf{y} , and \mathbf{z} as adjacent edges is equal to $|\mathbf{x} \cdot (\mathbf{y} \times \mathbf{z})|$.

Area of the grey parallelogram $= |\mathbf{y} \times \mathbf{z}|$. Volume of the parallelepiped $= |\mathbf{x} \cdot (\mathbf{y} \times \mathbf{z})|$. The triple $\mathbf{x}, \mathbf{y}, \mathbf{z}$ obeys the right-hand rule. **Problem.** (i) Find volume of the parallelepiped with vectors $\mathbf{a} = (1, 4, 7)$, $\mathbf{b} = (2, 5, 8)$, and $\mathbf{c} = (3, 6, 13)$ as adjacent edges. (ii) Determine whether the triple $\mathbf{a}, \mathbf{b}, \mathbf{c}$ obeys the same hand rule as the standard basis $\mathbf{i}, \mathbf{j}, \mathbf{k}$.

$$\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = \begin{vmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 13 \end{vmatrix} = \begin{vmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 13 \end{vmatrix} = -12.$$

Volume of the parallelepiped $= |\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})| = 12$. Since $\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) < 0$, the triple $\mathbf{a}, \mathbf{b}, \mathbf{c}$ does not obey the same hand rule as the triple $\mathbf{i}, \mathbf{j}, \mathbf{k}$. Suppose Π is a plane in \mathbb{R}^3 with a parametric representation $t_1\mathbf{v} + t_2\mathbf{w} + \mathbf{u}$, where $\mathbf{u} = (u_1, u_2, u_3)$, $\mathbf{v} = (v_1, v_2, v_3)$, $\mathbf{w} = (w_1, w_2, w_3)$.

Recall that **u** is a point in Π while **v** and **w** are vectors parallel to the plane. Then the vector **v** \times **w** is orthogonal to the plane.

Therefore the plane Π is given by the equation $({\bf x}-{\bf u})\cdot({\bf v}\times{\bf w})=0 \ \, {\rm or}$

$$\begin{vmatrix} x - u_1 & y - u_2 & z - u_3 \\ v_1 & v_2 & v_3 \\ w_1 & w_2 & w_3 \end{vmatrix} = 0,$$

where $\mathbf{x} = (x, y, z)$.