MATH 311-504
 Topics in Applied Mathematics

Lecture 13:
Review for Test 1.

Topics for Test 1

Vectors (Williamson/Trotter 1.1-1.2, 1.4, 1.6, 2.2C)

- Vector addition and scalar multiplication
- Length of a vector, angle between vectors
- Dot product, orthogonality
- Cross product, mixed triple product
- Linear dependence

Analytic geometry (Williamson/Trotter 1.3, 1.5-1.6)

- Lines and planes, parametric representation
- Equations of a line in \mathbb{R}^{2} and of a plane in \mathbb{R}^{3}
- Distance from a point to a line in \mathbb{R}^{2} or from a point to a plane in \mathbb{R}^{3}
- Area of a triangle and a parallelogram in \mathbb{R}^{3}
- Volume of a parallelepiped in \mathbb{R}^{3}

Topics for Test 1

Systems of linear equations (Williamson/Trotter 2.1-2.2)

- Elimination and back substitution
- Elementary operations, Gaussian elimination
- Matrix of coefficients and augmented matrix
- Elementary row operations
- Row echelon form and reduced row echelon form
- Free variables, parametric representation of the solution set
- Homogeneous systems, checking for linear independence of vectors

Topics for Test 1

Matrix algebra (Williamson/Trotter 2.3-2.4)

- Matrix addition and scalar multiplication
- Matrix multiplication
- Diagonal matrices, identity matrix
- Matrix polynomials
- Inverse matrix

Determinants (Williamson/Trotter 2.5)

- Explicit formulas for 2×2 and 3×3 matrices
- Elementary row and column operations
- Row and column expansions
- Test for linear dependence

Sample problems for Test 1

Problem 1 (25 pts.) Let Π be the plane in \mathbb{R}^{3} passing through the points $(2,0,0),(1,1,0)$, and $(-3,0,2)$. Let ℓ be the line in \mathbb{R}^{3} passing through the point $(1,1,1)$ in the direction (2, 2, 2).
(i) Find a parametric representation for the line ℓ.
(ii) Find a parametric representation for the plane Π.
(iii) Find an equation for the plane Π.
(iv) Find the point where the line ℓ intersects the plane Π.
(v) Find the angle between the line ℓ and the plane Π.
(vi) Find the distance from the origin to the plane Π.

Problem 2 (15 pts.) Let $f(x)=a \cos 2 x+b \cos x+c$.
Find a, b, and c so that $f(0)=0, f^{\prime \prime}(0)=2$, and $f^{\prime \prime \prime \prime}(0)=10$.

Sample problems for Test 1

Problem 3 (20 pts.) Let $A=\left(\begin{array}{rrrr}0 & -2 & 4 & 1 \\ 2 & 3 & 2 & 0 \\ 1 & 0 & -1 & 1 \\ 1 & 0 & 0 & 1\end{array}\right)$.
Find the inverse matrix A^{-1}.

Problem 4 (20 pts.) Evaluate the following determinants:

$$
\text { (i) }\left|\begin{array}{rrrr}
0 & -2 & 4 & 1 \\
2 & 3 & 2 & 0 \\
1 & 0 & -1 & 1 \\
1 & 0 & 0 & 1
\end{array}\right|, \quad \text { (ii) }\left|\begin{array}{rrrr}
2 & -2 & 0 & 3 \\
-5 & 3 & 2 & 1 \\
1 & -1 & 0 & -3 \\
2 & 0 & 0 & -1
\end{array}\right| .
$$

Bonus Problem 5 ($\mathbf{1 5}$ pts.) Find the volume of the tetrahedron with vertices at the points $\mathbf{a}=(1,0,0)$, $\mathbf{b}=(0,1,0), \mathbf{c}=(0,0,1)$, and $\mathbf{d}=(2,3,5)$.

Problem 1 Let Π be the plane in \mathbb{R}^{3} passing through the points $(2,0,0),(1,1,0)$, and $(-3,0,2)$.
Let ℓ be the line in \mathbb{R}^{3} passing through the point $(1,1,1)$ in the direction $(2,2,2)$.
(i) Find a parametric representation for the line ℓ.

Parametric representation: $t(2,2,2)+(1,1,1)$.
The line ℓ passes through the origin $(t=-1 / 2)$. Hence an equivalent representation is $s(2,2,2)$.

Problem 1 Let Π be the plane in \mathbb{R}^{3} passing through the points $(2,0,0),(1,1,0)$, and $(-3,0,2)$. Let ℓ be the line in \mathbb{R}^{3} passing through the point $(1,1,1)$ in the direction $(2,2,2)$.
(ii) Find a parametric representation for the plane Π.

Since the plane Π contains the points $\mathbf{a}=(2,0,0)$, $\mathbf{b}=(1,1,0)$, and $\mathbf{c}=(-3,0,2)$, the vectors $\mathbf{b}-\mathbf{a}=(-1,1,0)$ and $\mathbf{c}-\mathbf{a}=(-5,0,2)$ are parallel to Π. Clearly, $\mathbf{b}-\mathbf{a}$ is not parallel to $\mathbf{c}-\mathbf{a}$. Hence we get a parametric representation

$$
\begin{aligned}
& t_{1}(\mathbf{b}-\mathbf{a})+t_{2}(\mathbf{c}-\mathbf{a})+\mathbf{a}= \\
& \quad=t_{1}(-1,1,0)+t_{2}(-5,0,2)+(2,0,0)
\end{aligned}
$$

Problem 1 Let Π be the plane in \mathbb{R}^{3} passing through the points $\mathbf{a}=(2,0,0), \mathbf{b}=(1,1,0)$, and $\mathbf{c}=(-3,0,2)$. Let ℓ be the line in \mathbb{R}^{3} passing through the point $(1,1,1)$ in the direction $(2,2,2)$.
(iii) Find an equation for the plane Π.

Vectors $\mathbf{b}-\mathbf{a}=(-1,1,0)$ and $\mathbf{c}-\mathbf{a}=(-5,0,2)$ are parallel to $\Pi \Longrightarrow$ their cross product \mathbf{p} is orthogonal to Π.

$$
\begin{aligned}
\mathbf{p}=\left|\begin{array}{rrr}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
-1 & 1 & 0 \\
-5 & 0 & 2
\end{array}\right| & =\left|\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right| \mathbf{i}-\left|\begin{array}{ll}
-1 & 0 \\
-5 & 2
\end{array}\right| \mathbf{j}+\left|\begin{array}{ll}
-1 & 1 \\
-5 & 0
\end{array}\right| \mathbf{k} \\
& =2 \mathbf{i}+2 \mathbf{j}+5 \mathbf{k}=(2,2,5) .
\end{aligned}
$$

A point $\mathbf{x}=(x, y, z)$ is in the plane Π if and only if
$\mathbf{p} \cdot(\mathbf{x}-\mathbf{a})=0 \Longleftrightarrow 2(x-2)+2 y+5 z=0$
$\Longleftrightarrow 2 x+2 y+5 z=4$

Problem 1 Let Π be the plane in \mathbb{R}^{3} passing through the points $(2,0,0),(1,1,0)$, and $(-3,0,2)$. Let ℓ be the line in \mathbb{R}^{3} passing through the point $(1,1,1)$ in the direction $(2,2,2)$.
(iv) Find the point where the line ℓ intersects the plane Π.

Let $\mathbf{x}_{0}=(x, y, z)$ be the point of intersection. Then $\mathbf{x}_{0}=s(2,2,2)$ for some $s \in \mathbb{R}$ and also $2 x+2 y+5 z=4$.

$$
2(2 s)+2(2 s)+5(2 s)=4 \Longleftrightarrow s=2 / 9
$$

Hence $\mathbf{x}_{0}=(4 / 9,4 / 9,4 / 9)$.

Problem 1 Let Π be the plane in \mathbb{R}^{3} passing through the points $(2,0,0),(1,1,0)$, and $(-3,0,2)$. Let ℓ be the line in \mathbb{R}^{3} passing through the point $(1,1,1)$ in the direction $(2,2,2)$.
(v) Find the angle between the line ℓ and the plane Π.

Let ϕ denote the angle between vectors $\mathbf{u}=(2,2,2)$ and $\mathbf{p}=(2,2,5)$. Our angle is $\psi=|\pi / 2-\phi|$.

$$
\begin{aligned}
& \cos \phi=\frac{\mathbf{u} \cdot \mathbf{p}}{|\mathbf{u}||\mathbf{p}|}=\frac{18}{\sqrt{12} \sqrt{33}}=\frac{3}{\sqrt{11}} \\
& \psi=\frac{\pi}{2}-\arccos \frac{3}{\sqrt{11}}=\arcsin \frac{3}{\sqrt{11}}
\end{aligned}
$$

Problem 1 Let Π be the plane in \mathbb{R}^{3} passing through the points $(2,0,0),(1,1,0)$, and $(-3,0,2)$. Let ℓ be the line in \mathbb{R}^{3} passing through the point $(1,1,1)$ in the direction $(2,2,2)$.
(vi) Find the distance from the origin to the plane Π.

The equation of the plane Π is $2 x+2 y+5 z=4$. Hence the distance from a point $\left(x_{0}, y_{0}, z_{0}\right)$ to Π equals

$$
\frac{\left|2 x_{0}+2 y_{0}+5 z_{0}-4\right|}{\sqrt{2^{2}+2^{2}+5^{2}}}=\frac{\left|2 x_{0}+2 y_{0}+5 z_{0}-4\right|}{\sqrt{33}}
$$

The distance from the origin to the plane is equal to $4 / \sqrt{33}$.

Bonus Problem 5. Find the volume of the tetrahedron with vertices $\mathbf{a}=(1,0,0)$,
$\mathbf{b}=(0,1,0), \mathbf{c}=(0,0,1)$, and $\mathbf{d}=(2,3,5)$.
Vectors $\mathbf{x}=\mathbf{b}-\mathbf{a}=(-1,1,0), \mathbf{y}=\mathbf{c}-\mathbf{a}=(-1,0,1)$, and $\mathbf{z}=\mathbf{d}-\mathbf{a}=(1,3,5)$ are represented by adjacent edges of the tetrahedron.
It follows that the volume of the tetrahedron is $\frac{1}{6}|\mathbf{x} \cdot(\mathbf{y} \times \mathbf{z})|$.
$\mathbf{x} \cdot(\mathbf{y} \times \mathbf{z})=\left|\begin{array}{rrr}-1 & 1 & 0 \\ -1 & 0 & 1 \\ 1 & 3 & 5\end{array}\right|=(-1)\left|\begin{array}{ll}0 & 1 \\ 3 & 5\end{array}\right|-1\left|\begin{array}{rr}-1 & 1 \\ 1 & 5\end{array}\right|=9$.
Thus the volume of the tetrahedron is

$$
\frac{1}{6}|\mathbf{x} \cdot(\mathbf{y} \times \mathbf{z})|=\frac{1}{6} \cdot 9=1.5
$$

Parallelepiped is a prism.
$($ Volume $)=($ area of the base $) \times($ height $)$
Area of the base $=|\mathbf{y} \times \mathbf{z}|$
Volume $=|\mathbf{x} \cdot(\mathbf{y} \times \mathbf{z})|$

Tetrahedron is a pyramid.
$($ Volume $)=\frac{1}{3}$ (area of the base) $\times($ height $)$
Area of the base $=\frac{1}{2}|\mathbf{y} \times \mathbf{z}|$
\Longrightarrow Volume $=\frac{1}{6}|\mathbf{x} \cdot(\mathbf{y} \times \mathbf{z})|$

Problem 2. Let $f(x)=a \cos 2 x+b \cos x+c$.
Find a, b, and c so that $f(0)=0, f^{\prime \prime}(0)=2$, and $f^{\prime \prime \prime \prime}(0)=10$.
$f^{\prime \prime}(x)=-4 a \cos 2 x-b \cos x, f^{\prime \prime \prime \prime}(x)=16 a \cos 2 x+b \cos x$

$$
\Longrightarrow f(0)=a+b+c, f^{\prime \prime}(0)=-4 a-b, f^{\prime \prime \prime \prime}(0)=16 a+b
$$

The coefficients a, b, c should satisfy a system

$$
\left\{\begin{array} { l }
{ a + b + c = 0 } \\
{ - 4 a - b = 2 } \\
{ 1 6 a + b = 1 0 }
\end{array} \Longleftrightarrow \left\{\begin{array} { l }
{ a + b + c = 0 } \\
{ - 4 a - b = 2 } \\
{ 1 2 a = 1 2 }
\end{array} \Longleftrightarrow \left\{\begin{array}{l}
a=1 \\
b=-6 \\
c=5
\end{array}\right.\right.\right.
$$

Thus $f(x)=\cos 2 x-6 \cos x+5$.

Problem 3. Let $A=\left(\begin{array}{rrrr}0 & -2 & 4 & 1 \\ 2 & 3 & 2 & 0 \\ 1 & 0 & -1 & 1 \\ 1 & 0 & 0 & 1\end{array}\right)$. Find A^{-1}.

First we merge the matrix A with the identity matrix into one 4×8 matrix

$$
(A \mid I)=\left(\begin{array}{rrrr|rrrr}
0 & -2 & 4 & 1 & 1 & 0 & 0 & 0 \\
2 & 3 & 2 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & -1 & 1 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 & 0 & 0 & 0 & 1
\end{array}\right) .
$$

Then we apply elementary row operations to this matrix until the left part becomes the identity matrix.

Interchange the 1st row with the 4th row:

$$
\left(\begin{array}{rrrr|rrr}
1 & 0 & 0 & 1 & 0 & 0 & 0 \\
2 \\
2 & 3 & 2 & 0 & 0 & 1 & 0 \\
0 \\
1 & 0 & -1 & 1 & 0 & 0 & 1
\end{array} 00\right.
$$

Subtract 2 times the 1st row from the 2 nd row:

$$
\left(\begin{array}{rrrr|rrrr}
1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
0 & 3 & 2 & -2 & 0 & 1 & 0 & -2 \\
1 & 0 & -1 & 1 & 0 & 0 & 1 & 0 \\
0 & -2 & 4 & 1 & 1 & 0 & 0 & 0
\end{array}\right)
$$

Subtract the 1st row from the 3rd row:
$\left(\begin{array}{rrrr|rrrr}1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 3 & 2 & -2 & 0 & 1 & 0 & -2 \\ 0 & 0 & -1 & 0 & 0 & 0 & 1 & -1 \\ 0 & -2 & 4 & 1 & 1 & 0 & 0 & 0\end{array}\right)$

Add the 4 th row to the 2 nd row:
$\left(\begin{array}{rrrr|rrrr}1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 6 & -1 & 1 & 1 & 0 & -2 \\ 0 & 0 & -1 & 0 & 0 & 0 & 1 & -1 \\ 0 & -2 & 4 & 1 & 1 & 0 & 0 & 0\end{array}\right)$
Add 2 times the 2 nd row to the 4 th row:
$\left(\begin{array}{rrrr|rrrr}1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 6 & -1 & 1 & 1 & 0 & -2 \\ 0 & 0 & -1 & 0 & 0 & 0 & 1 & -1 \\ 0 & 0 & 16 & -1 & 3 & 2 & 0 & -4\end{array}\right)$
Add 16 times the 3rd row to the 4th row:

$$
\left(\begin{array}{rrrr|rrrr}
1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
0 & 1 & 6 & -1 & 1 & 1 & 0 & -2 \\
0 & 0 & -1 & 0 & 0 & 0 & 1 & -1 \\
0 & 0 & 0 & -1 & 3 & 2 & 16 & -20
\end{array}\right)
$$

Multiply the 3 rd and the 4 th rows by -1 :

$$
\left(\begin{array}{rrrr|rrrr}
1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
0 & 1 & 6 & -1 & 1 & 1 & 0 & -2 \\
0 & 0 & 1 & 0 & 0 & 0 & -1 & 1 \\
0 & 0 & 0 & 1 & -3 & -2 & -16 & 20
\end{array}\right)
$$

Add the 4 th row to the 2 nd row:

$$
\left(\begin{array}{rrrr|rrrr}
1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
0 & 1 & 6 & 0 & -2 & -1 & -16 & 18 \\
0 & 0 & 1 & 0 & 0 & 0 & -1 & 1 \\
0 & 0 & 0 & 1 & -3 & -2 & -16 & 20
\end{array}\right)
$$

Subtract the 4th row from the 1st row:
$\left(\begin{array}{rrrr|rrrr}1 & 0 & 0 & 0 & 3 & 2 & 16 & -19 \\ 0 & 1 & 6 & 0 & -2 & -1 & -16 & 18 \\ 0 & 0 & 1 & 0 & 0 & 0 & -1 & 1 \\ 0 & 0 & 0 & 1 & -3 & -2 & -16 & 20\end{array}\right)$

Subtract 6 times the 3rd row from the 2nd row:

$$
\left(\begin{array}{rrrr|rrrr}
1 & 0 & 0 & 0 & 3 & 2 & 16 & -19 \\
0 & 1 & 0 & 0 & -2 & -1 & -10 & 12 \\
0 & 0 & 1 & 0 & 0 & 0 & -1 & 1 \\
0 & 0 & 0 & 1 & -3 & -2 & -16 & 20
\end{array}\right)=\left(I \mid A^{-1}\right)
$$

Finally the left part of our 4×8 matrix is transformed into the identity matrix. Therefore the current right part is the inverse matrix of A. Thus

$$
A^{-1}=\left(\begin{array}{rrrr}
0 & -2 & 4 & 1 \\
2 & 3 & 2 & 0 \\
1 & 0 & -1 & 1 \\
1 & 0 & 0 & 1
\end{array}\right)^{-1}=\left(\begin{array}{rrrr}
3 & 2 & 16 & -19 \\
-2 & -1 & -10 & 12 \\
0 & 0 & -1 & 1 \\
-3 & -2 & -16 & 20
\end{array}\right)
$$

Problem 4(i). $A=\left(\begin{array}{rrrr}0 & -2 & 4 & 1 \\ 2 & 3 & 2 & 0 \\ 1 & 0 & -1 & 1 \\ 1 & 0 & 0 & 1\end{array}\right)$. Find $\operatorname{det} A$.
In the solution of Problem 3, the matrix A has been transformed into the identity matrix using elementary row operations.
Those included one row exchange and two row multiplications, each time by -1 .
$\Longrightarrow \operatorname{det} I=-(-1)^{2} \operatorname{det} A$
$\Longrightarrow \operatorname{det} A=-\operatorname{det} I=-1$

Problem 4(ii). $B=\left(\begin{array}{rrrr}2 & -2 & 0 & 3 \\ -5 & 3 & 2 & 1 \\ 1 & -1 & 0 & -3 \\ 2 & 0 & 0 & -1\end{array}\right)$. Find $\operatorname{det} B$.
Expand the determinant by the 3rd column:

$$
\left|\begin{array}{rrrr}
2 & -2 & 0 & 3 \\
-5 & 3 & 2 & 1 \\
1 & -1 & 0 & -3 \\
2 & 0 & 0 & -1
\end{array}\right|=-2\left|\begin{array}{rrr}
2 & -2 & 3 \\
1 & -1 & -3 \\
2 & 0 & -1
\end{array}\right|
$$

Subtract 2 times the 2 nd row from the 1st row:

Subtract 2 times the 2 nd row from the 1st row:

$$
\operatorname{det} B=-2\left|\begin{array}{rrr}
2 & -2 & 3 \\
1 & -1 & -3 \\
2 & 0 & -1
\end{array}\right|=-2\left|\begin{array}{rrr}
0 & 0 & 9 \\
1 & -1 & -3 \\
2 & 0 & -1
\end{array}\right|
$$

Expand the determinant by the 1st row:

$$
\operatorname{det} B=-2\left|\begin{array}{rrr}
0 & 0 & 9 \\
1 & -1 & -3 \\
2 & 0 & -1
\end{array}\right|=-2 \cdot 9\left|\begin{array}{rr}
1 & -1 \\
2 & 0
\end{array}\right|
$$

Thus

$$
\operatorname{det} B=-18\left|\begin{array}{rr}
1 & -1 \\
2 & 0
\end{array}\right|=-18 \cdot 2=-36
$$

