MATH 311-504 Topics in Applied Mathematics Lecture 1: Vectors. Dot product.

Vectors

Vector is a mathematical concept characterized by its *magnitude* and *direction*.

Scalar is a mathematical concept characterized by its *magnitude* and, possibly, *sign*.

Scalar is a real number (positive or negative).

Many physical quantities are vectors:

- force;
- displacement, velocity, acceleration;
- electric field, magnetic field.

Vectors: geometric approach

- A vector is represented by a directed segment.
- Directed segment is drawn as an arrow.
- Different arrows represent the same vector if they are of the same length and direction.

Vectors: geometric approach

Notation: \mathbf{v} or \vec{v} .

 \overrightarrow{AB} denotes the vector represented by the arrow with tip at B and tail at A.

 \overrightarrow{AA} is called the *zero vector* and denoted **0** or $\vec{0}$.

Vectors: geometric approach

If $\mathbf{v} = \overrightarrow{AB}$ then \overrightarrow{BA} is called the *inverse vector* of \mathbf{v} and denoted $-\mathbf{v}$.

Vector addition

Given vectors **a** and **b**, their sum $\mathbf{a} + \mathbf{b}$ is defined by the rule $\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$.

That is, choose points A, B, C so that $\overrightarrow{AB} = \mathbf{a}$ and $\overrightarrow{BC} = \mathbf{b}$. Then $\mathbf{a} + \mathbf{b} = \overrightarrow{AC}$.

Vector subtraction

The *difference* of the two vectors is defined as $\mathbf{a} - \mathbf{b} = \mathbf{a} + (-\mathbf{b})$.

Properties of vector addition:

- $\begin{aligned} (\mathbf{a} + \mathbf{b}) + \mathbf{c} &= \mathbf{a} + (\mathbf{b} + \mathbf{c}) & (\text{associative law}) \\ \mathbf{a} + \mathbf{b} &= \mathbf{b} + \mathbf{a} & (\text{commutative law}) \end{aligned}$
- a + 0 = 0 + a = a
- $\mathbf{a} + (-\mathbf{a}) = (-\mathbf{a}) + \mathbf{a} = \mathbf{0}$

Let
$$\overrightarrow{AB} = \mathbf{a}$$
. Then $\mathbf{a} + \mathbf{0} = \overrightarrow{AB} + \overrightarrow{BB} = \overrightarrow{AB} = \mathbf{a}$,
 $\mathbf{a} + (-\mathbf{a}) = \overrightarrow{AB} + \overrightarrow{BA} = \overrightarrow{AA} = \mathbf{0}$.
Let $\overrightarrow{AB} = \mathbf{a}$, $\overrightarrow{BC} = \mathbf{b}$, and $\overrightarrow{CD} = \mathbf{c}$. Then
 $(\mathbf{a} + \mathbf{b}) + \mathbf{c} = (\overrightarrow{AB} + \overrightarrow{BC}) + \overrightarrow{CD} = \overrightarrow{AC} + \overrightarrow{CD} = \overrightarrow{AD}$,
 $\mathbf{a} + (\mathbf{b} + \mathbf{c}) = \overrightarrow{AB} + (\overrightarrow{BC} + \overrightarrow{CD}) = \overrightarrow{AB} + \overrightarrow{BD} = \overrightarrow{AD}$.

Parallelogram rule

Let
$$\overrightarrow{AB} = \mathbf{a}$$
, $\overrightarrow{BC} = \mathbf{b}$, $\overrightarrow{AB'} = \mathbf{b}$, and $\overrightarrow{B'C'} = \mathbf{a}$.
Then $\mathbf{a} + \mathbf{b} = \overrightarrow{AC}$, $\mathbf{b} + \mathbf{a} = \overrightarrow{AC'}$.

Parallelogram rule

Let
$$\overrightarrow{AB} = \mathbf{a}$$
, $\overrightarrow{BC} = \mathbf{b}$, $\overrightarrow{AB'} = \mathbf{b}$, and $\overrightarrow{B'C'} = \mathbf{a}$.
Then $\mathbf{a} + \mathbf{b} = \overrightarrow{AC}$, $\mathbf{b} + \mathbf{a} = \overrightarrow{AC'}$.

Scalar multiplication

Let **v** be a vector and $r \in \mathbb{R}$. By definition, $r\mathbf{v}$ is a vector whose magnitude is |r| times the magnitude of **v**. The direction of $r\mathbf{v}$ coincides with that of **v** if r > 0. If r < 0 then the directions of $r\mathbf{v}$ and **v** are opposite.

Properties of scalar multiplication:

$$r(sa) = (rs)a$$
(associative law) $r(a + b) = ra + rb$ (distributive law #1) $(r + s)a = ra + sa$ (distributive law #2) $1a = a$ (-1) $a = -a$ $0a = 0$

Length of a vector

The **length** (or the **magnitude**) of a vector \overrightarrow{AB} is the length of the representing segment AB. The length of a vector **v** is denoted $|\mathbf{v}|$.

Properties of vector length: $|\mathbf{x}| \ge 0$, $|\mathbf{x}| = 0$ only if $\mathbf{x} = \mathbf{0}$ (positivity) $|r\mathbf{x}| = |r| |\mathbf{x}|$ (homogeneity) $|\mathbf{x} + \mathbf{y}| \le |\mathbf{x}| + |\mathbf{y}|$ (triangle inequality)

Angle between vectors

Given nonzero vectors **x** and **y**, let A, B, and C be points such that $\overrightarrow{AB} = \mathbf{x}$ and $\overrightarrow{AC} = \mathbf{y}$. Then $\angle BAC$ is called the **angle** between **x** and **y**.

The vectors **x** and **y** are called **orthogonal** (denoted $\mathbf{x} \perp \mathbf{y}$) if the angle between them equals 90°.

Pythagorean Theorem: $\mathbf{x} \perp \mathbf{y} \implies |\mathbf{x} + \mathbf{y}|^2 = |\mathbf{x}|^2 + |\mathbf{y}|^2$

3-dimensional Pythagorean Theorem: If vectors $\mathbf{x}, \mathbf{y}, \mathbf{z}$ are pairwise orthogonal then $|\mathbf{x} + \mathbf{y} + \mathbf{z}|^2 = |\mathbf{x}|^2 + |\mathbf{y}|^2 + |\mathbf{z}|^2$

Law of cosines: $|\mathbf{x} - \mathbf{y}|^2 = |\mathbf{x}|^2 + |\mathbf{y}|^2 - 2|\mathbf{x}| |\mathbf{y}| \cos \theta$

Parallelogram Identity: $|\mathbf{x} + \mathbf{y}|^2 + |\mathbf{x} - \mathbf{y}|^2 = 2|\mathbf{x}|^2 + 2|\mathbf{y}|^2$

Dot product

The **dot product** of vectors **x** and **y** is $\mathbf{x} \cdot \mathbf{y} = |\mathbf{x}| |\mathbf{y}| \cos \theta,$

where θ is the angle between **x** and **y**.

The dot product is also called the **scalar product**. Alternative notation: (\mathbf{x}, \mathbf{y}) or $\langle \mathbf{x}, \mathbf{y} \rangle$.

The vectors **x** and **y** are orthogonal if and only if $\mathbf{x} \cdot \mathbf{y} = \mathbf{0}$.

Relations between lengths and dot products:

•
$$|\mathbf{x}| = \sqrt{\mathbf{x} \cdot \mathbf{x}}$$

•
$$|\mathbf{x} \cdot \mathbf{y}| \le |\mathbf{x}| |\mathbf{y}|$$

•
$$|\mathbf{x} - \mathbf{y}|^2 = |\mathbf{x}|^2 + |\mathbf{y}|^2 - 2 \mathbf{x} \cdot \mathbf{y}$$

Vectors: algebraic approach

An *n*-dimensional vector is an element of \mathbb{R}^n , i.e., an ordered *n*-tuple (x_1, x_2, \ldots, x_n) of real numbers. Components of the vector are called *coordinates*.

Let $\mathbf{a} = (a_1, a_2, \dots, a_n)$ and $\mathbf{b} = (b_1, b_2, \dots, b_n)$ be vectors, and $r \in \mathbb{R}$ be a scalar. Then, by definition,

$$\mathbf{a} + \mathbf{b} = (a_1 + b_1, a_2 + b_2, \dots, a_n + b_n),$$

$$r\mathbf{a} = (ra_1, ra_2, \dots, ra_n),$$

$$\mathbf{0} = (0, 0, \dots, 0),$$

$$-\mathbf{b} = (-b_1, -b_2, \dots, -b_n),$$

$$\mathbf{a} - \mathbf{b} = \mathbf{a} + (-\mathbf{b}) = (a_1 - b_1, a_2 - b_2, \dots, a_n - b_n).$$

Properties of vector addition and scalar multiplication:

$$(a + b) + c = a + (b + c)$$

 $a + b = b + a$
 $a + 0 = 0 + a = a$
 $a + (-a) = (-a) + a = 0$
 $r(sa) = (rs)a$
 $r(a + b) = ra + rb$
 $(r + s)a = ra + sa$
 $1a = a$
 $(-1)a = -a$
 $0a = 0$

Cartesian coordinates: geometry meets algebra

Cartesian coordinates allow us to identify a line, a plane, and space with \mathbb{R} , \mathbb{R}^2 , and \mathbb{R}^3 , respectively. Once we specify the *origin* O, each point A is associated a *position vector* \overrightarrow{OA} . Conversely, every vector has a unique representative with tail at O.

Standard basis

The standard basis in \mathbb{R}^n is the set of *n* vectors $\mathbf{e}_1 = (1, 0, 0, \dots, 0, 0), \ \mathbf{e}_2 = (0, 1, 0, \dots, 0, 0), \dots,$ $\mathbf{e}_n = (0, 0, 0, \dots, 0, 1).$ If $\mathbf{x} = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n$, then $\mathbf{x} = x_1 \mathbf{e}_1 + x_2 \mathbf{e}_2 + \dots + x_n \mathbf{e}_n.$

We say that **x** is a *linear combination* of vectors $\mathbf{e}_1, \mathbf{e}_2, \ldots, \mathbf{e}_n$. The numbers x_1, x_2, \ldots, x_n are called *coordinates* of **x**. The vectors $x_1\mathbf{e}_1, x_2\mathbf{e}_2, \ldots, x_n\mathbf{e}_n$ are called *components* of **x**.

In \mathbb{R}^2 , we have an alternative notation $\mathbf{i} = (1,0)$ and $\mathbf{j} = (0,1)$. In \mathbb{R}^3 , we have an alternative notation $\mathbf{i} = (1,0,0)$, $\mathbf{j} = (0,1,0)$, and $\mathbf{k} = (0,0,1)$.

Length and distance

Definition. The **length** of a vector $\mathbf{v} = (v_1, v_2, \dots, v_n) \in \mathbb{R}^n$ is $|\mathbf{v}| = \sqrt{v_1^2 + v_2^2 + \dots + v_n^2}.$

The **distance** between vectors (or points) \mathbf{x} and \mathbf{y} is $|\mathbf{y} - \mathbf{x}|$.

Properties of length: $|\mathbf{x}| \ge 0$, $|\mathbf{x}| = 0$ only if $\mathbf{x} = \mathbf{0}$ (positivity) $|r\mathbf{x}| = |r| |\mathbf{x}|$ (homogeneity) $|\mathbf{x} + \mathbf{y}| \le |\mathbf{x}| + |\mathbf{y}|$ (triangle inequality)

Dot product

Definition. The **dot product** of vectors $\mathbf{x} = (x_1, x_2, \dots, x_n)$ and $\mathbf{y} = (y_1, y_2, \dots, y_n)$ is $\mathbf{x} \cdot \mathbf{y} = x_1 y_1 + x_2 y_2 + \dots + x_n y_n = \sum_{k=1}^n x_k y_k.$

Properties of dot product:
$$\mathbf{x} \cdot \mathbf{x} \ge 0$$
, $\mathbf{x} \cdot \mathbf{x} = 0$ only if $\mathbf{x} = \mathbf{0}$ (positivity) $\mathbf{x} \cdot \mathbf{y} = \mathbf{y} \cdot \mathbf{x}$ (symmetry) $(\mathbf{x} + \mathbf{y}) \cdot \mathbf{z} = \mathbf{x} \cdot \mathbf{z} + \mathbf{y} \cdot \mathbf{z}$ (distributive law) $(r\mathbf{x}) \cdot \mathbf{y} = r(\mathbf{x} \cdot \mathbf{y})$ (homogeneity)

Relations between lengths and dot products:

$$\begin{split} |\mathbf{x}| &= \sqrt{\mathbf{x} \cdot \mathbf{x}} \\ |\mathbf{x} \cdot \mathbf{y}| &\leq |\mathbf{x}| |\mathbf{y}| \qquad \text{(Cauchy-Schwarz inequality)} \\ |\mathbf{x} - \mathbf{y}|^2 &= |\mathbf{x}|^2 + |\mathbf{y}|^2 - 2 \, \mathbf{x} \cdot \mathbf{y} \end{split}$$

By the Cauchy-Schwarz inequality, for any nonzero vectors $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ we have

$$\cos \theta = rac{\mathbf{x} \cdot \mathbf{y}}{|\mathbf{x}| |\mathbf{y}|}$$
 for some $0 \le \theta \le \pi$.

 θ is called the **angle** between the vectors **x** and **y**. The vectors **x** and **y** are said to be **orthogonal** (denoted **x** \perp **y**) if **x** \cdot **y** = 0 (i.e., if $\theta = 90^{\circ}$).