MATH 311-504
 Topics in Applied Mathematics

Lecture 1:
Vectors. Dot product.

Vectors

Vector is a mathematical concept characterized by its magnitude and direction.

Scalar is a mathematical concept characterized by its magnitude and, possibly, sign.
Scalar is a real number (positive or negative).
Many physical quantities are vectors:

- force;
- displacement, velocity, acceleration;
- electric field, magnetic field.

Vectors: geometric approach

- A vector is represented by a directed segment.
- Directed segment is drawn as an arrow.
- Different arrows represent the same vector if they are of the same length and direction.

Vectors: geometric approach

Notation: \mathbf{v} or \vec{v}.
$\overrightarrow{A B}$ denotes the vector represented by the arrow with tip at B and tail at A.
$\overrightarrow{A A}$ is called the zero vector and denoted 0 or $\overrightarrow{0}$.

Vectors: geometric approach

If $\mathbf{v}=\overrightarrow{A B}$ then $\overrightarrow{B A}$ is called the inverse vector of \mathbf{v} and denoted $-\mathbf{v}$.

Vector addition

Given vectors \mathbf{a} and \mathbf{b}, their sum $\mathbf{a}+\mathbf{b}$ is defined by the rule $\overrightarrow{A B}+\overrightarrow{B C}=\overrightarrow{A C}$.
That is, choose points A, B, C so that $\overrightarrow{A B}=\mathbf{a}$ and $\overrightarrow{B C}=\mathbf{b}$. Then $\mathbf{a}+\mathbf{b}=\overrightarrow{A C}$.

Vector subtraction

The difference of the two vectors is defined as $\mathbf{a}-\mathbf{b}=\mathbf{a}+(-\mathbf{b})$.

Properties of vector addition:

$$
\begin{array}{lr}
(\mathbf{a}+\mathbf{b})+\mathbf{c}=\mathbf{a}+(\mathbf{b}+\mathbf{c}) & \text { (associative law) } \\
\mathbf{a}+\mathbf{b}=\mathbf{b}+\mathbf{a} & \text { (commutative law) } \\
\mathbf{a}+\mathbf{0}=\mathbf{0}+\mathbf{a}=\mathbf{a} \\
\mathbf{a}+(-\mathbf{a})=(-\mathbf{a})+\mathbf{a}=\mathbf{0}
\end{array}
$$

Let $\overrightarrow{A B}=\mathbf{a}$. Then $\mathbf{a}+\mathbf{0}=\overrightarrow{A B}+\overrightarrow{B B}=\overrightarrow{A B}=\mathbf{a}$, $\mathbf{a}+(-\mathbf{a})=\overrightarrow{A B}+\overrightarrow{B A}=\overrightarrow{A A}=\mathbf{0}$.
Let $\overrightarrow{A B}=\mathbf{a}, \overrightarrow{B C}=\mathbf{b}$, and $\overrightarrow{C D}=\mathbf{c}$. Then
$(\mathbf{a}+\mathbf{b})+\mathbf{c}=(\overrightarrow{A B}+\overrightarrow{B C})+\overrightarrow{C D}=\overrightarrow{A C}+\overrightarrow{C D}=\overrightarrow{A D}$,
$\mathbf{a}+(\mathbf{b}+\mathbf{c})=\overrightarrow{A B}+(\overrightarrow{B C}+\overrightarrow{C D})=\overrightarrow{A B}+\overrightarrow{B D}=\overrightarrow{A D}$.

Parallelogram rule

Let $\overrightarrow{A B}=\mathbf{a}, \overrightarrow{B C}=\mathbf{b}, \overrightarrow{A B^{\prime}}=\mathbf{b}$, and $\overrightarrow{B^{\prime} C^{\prime}}=\mathbf{a}$. Then $\mathbf{a}+\mathbf{b}=\overrightarrow{A C}, \mathbf{b}+\mathbf{a}=\overrightarrow{A C^{\prime}}$.

Wrong picture!

Parallelogram rule

Let $\overrightarrow{A B}=\mathbf{a}, \overrightarrow{B C}=\mathbf{b}, \overrightarrow{A B^{\prime}}=\mathbf{b}$, and $\overrightarrow{B^{\prime} C^{\prime}}=\mathbf{a}$.
Then $\mathbf{a}+\mathbf{b}=\overrightarrow{A C}, \mathbf{b}+\mathbf{a}=\overrightarrow{A C^{\prime}}$.

Right picture!

Scalar multiplication

Let \mathbf{v} be a vector and $r \in \mathbb{R}$. By definition, $r \mathbf{v}$ is a vector whose magnitude is $|r|$ times the magnitude of \mathbf{v}. The direction of $r \mathbf{v}$ coincides with that of \mathbf{v} if $r>0$. If $r<0$ then the directions of $r \mathbf{v}$ and \mathbf{v} are opposite.

$-\quad-2 v$

Properties of scalar multiplication:
$r(s \mathbf{a})=(r s) \mathbf{a}$
$r(\mathbf{a}+\mathbf{b})=r \mathbf{a}+r \mathbf{b}$
$(r+s) \mathbf{a}=r \mathbf{a}+s \mathbf{a}$
$1 \mathbf{a}=\mathbf{a}$
$(-1) \mathbf{a}=-\mathbf{a}$
$0 \mathrm{a}=\mathbf{0}$
(associative law)
(distributive law \#1)
(distributive law \#2)

Length of a vector

The length (or the magnitude) of a vector $\overrightarrow{A B}$ is the length of the representing segment $A B$. The length of a vector \mathbf{v} is denoted $|\mathbf{v}|$.

Properties of vector length:

$$
\begin{array}{lr}
|\mathbf{x}| \geq 0, \quad|\mathbf{x}|=0 \text { only if } \mathbf{x}=\mathbf{0} & \text { (positivity) } \\
|r \mathbf{x}|=|r||\mathbf{x}| & \text { (homogeneity) } \\
|\mathbf{x}+\mathbf{y}| \leq|\mathbf{x}|+|\mathbf{y}| & \text { (triangle inequality) }
\end{array}
$$

Angle between vectors

Given nonzero vectors \mathbf{x} and \mathbf{y}, let A, B, and C be points such that $\overrightarrow{A B}=\mathbf{x}$ and $\overrightarrow{A C}=\mathbf{y}$. Then $\angle B A C$ is called the angle between \mathbf{x} and \mathbf{y}.
The vectors \mathbf{x} and \mathbf{y} are called orthogonal (denoted $\mathbf{x} \perp \mathbf{y}$) if the angle between them equals 90°.

Pythagorean Theorem:

$$
\mathbf{x} \perp \mathbf{y} \Longrightarrow|\mathbf{x}+\mathbf{y}|^{2}=|\mathbf{x}|^{2}+|\mathbf{y}|^{2}
$$

3-dimensional Pythagorean Theorem:
If vectors $\mathbf{x}, \mathbf{y}, \mathbf{z}$ are pairwise orthogonal then

$$
|\mathbf{x}+\mathbf{y}+\mathbf{z}|^{2}=|\mathbf{x}|^{2}+|\mathbf{y}|^{2}+|\mathbf{z}|^{2}
$$

Law of cosines:

$$
|\mathbf{x}-\mathbf{y}|^{2}=|\mathbf{x}|^{2}+|\mathbf{y}|^{2}-2|\mathbf{x}||\mathbf{y}| \cos \theta
$$

Parallelogram Identity:

$$
|\mathbf{x}+\mathbf{y}|^{2}+|\mathbf{x}-\mathbf{y}|^{2}=2|\mathbf{x}|^{2}+2|\mathbf{y}|^{2}
$$

Dot product

The dot product of vectors \mathbf{x} and \mathbf{y} is

$$
\mathbf{x} \cdot \mathbf{y}=|\mathbf{x}||\mathbf{y}| \cos \theta
$$

where θ is the angle between \mathbf{x} and \mathbf{y}.
The dot product is also called the scalar product. Alternative notation: (\mathbf{x}, \mathbf{y}) or $\langle\mathbf{x}, \mathbf{y}\rangle$.
The vectors \mathbf{x} and \mathbf{y} are orthogonal if and only if $\mathbf{x} \cdot \mathbf{y}=0$.

Relations between lengths and dot products:

- $|\mathbf{x}|=\sqrt{\mathbf{x \cdot x}}$
- $|x \cdot y| \leq|x||y|$
- $|\mathbf{x}-\mathbf{y}|^{2}=|\mathbf{x}|^{2}+|\mathbf{y}|^{2}-2 \mathbf{x} \cdot \mathbf{y}$

Vectors: algebraic approach

An n-dimensional vector is an element of \mathbb{R}^{n}, i.e., an ordered n-tuple $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ of real numbers. Components of the vector are called coordinates.
Let $\mathbf{a}=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ and $\mathbf{b}=\left(b_{1}, b_{2}, \ldots, b_{n}\right)$ be vectors, and $r \in \mathbb{R}$ be a scalar. Then, by definition,
$\mathbf{a}+\mathbf{b}=\left(a_{1}+b_{1}, a_{2}+b_{2}, \ldots, a_{n}+b_{n}\right)$, $r \mathbf{a}=\left(r a_{1}, r a_{2}, \ldots, r a_{n}\right)$,
$\mathbf{0}=(0,0, \ldots, 0)$, $-\mathbf{b}=\left(-b_{1},-b_{2}, \ldots,-b_{n}\right)$,
$\mathbf{a}-\mathbf{b}=\mathbf{a}+(-\mathbf{b})=\left(a_{1}-b_{1}, a_{2}-b_{2}, \ldots, a_{n}-b_{n}\right)$.

Properties of vector addition and scalar multiplication:

$$
\begin{aligned}
& (\mathbf{a}+\mathbf{b})+\mathbf{c}=\mathbf{a}+(\mathbf{b}+\mathbf{c}) \\
& \mathbf{a}+\mathbf{b}=\mathbf{b}+\mathbf{a} \\
& \mathbf{a}+\mathbf{0}=\mathbf{0}+\mathbf{a}=\mathbf{a} \\
& \mathbf{a}+(-\mathbf{a})=(-\mathbf{a})+\mathbf{a}=\mathbf{0} \\
& r(s \mathbf{a})=(r s) \mathbf{a} \\
& r(\mathbf{a}+\mathbf{b})=r \mathbf{a}+r \mathbf{b} \\
& (r+s) \mathbf{a}=r \mathbf{a}+s \mathbf{a} \\
& 1 \mathbf{a}=\mathbf{a} \\
& (-1) \mathbf{a}=-\mathbf{a} \\
& 0 \mathbf{a}=\mathbf{0}
\end{aligned}
$$

Cartesian coordinates: geometry meets algebra

Cartesian coordinates allow us to identify a line, a plane, and space with $\mathbb{R}, \mathbb{R}^{2}$, and \mathbb{R}^{3}, respectively. Once we specify the origin O, each point A is associated a position vector $\overrightarrow{O A}$. Conversely, every vector has a unique representative with tail at O.

Standard basis

The standard basis in \mathbb{R}^{n} is the set of n vectors

$$
\begin{aligned}
& \mathbf{e}_{1}=(1,0,0, \ldots, 0,0), \mathbf{e}_{2}=(0,1,0, \ldots, 0,0), \ldots, \\
& \mathbf{e}_{n}=(0,0,0, \ldots, 0,1) \\
& \text { If } \mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{n}, \text { then }
\end{aligned}
$$

$$
\mathbf{x}=x_{1} \mathbf{e}_{1}+x_{2} \mathbf{e}_{2}+\cdots+x_{n} \mathbf{e}_{n} .
$$

We say that \mathbf{x} is a linear combination of vectors
$\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{n}$. The numbers $x_{1}, x_{2}, \ldots, x_{n}$ are called coordinates of \mathbf{x}. The vectors $x_{1} \mathbf{e}_{1}, x_{2} \mathbf{e}_{2}, \ldots, x_{n} \mathbf{e}_{n}$ are called components of \mathbf{x}.
In \mathbb{R}^{2}, we have an alternative notation $\mathbf{i}=(1,0)$
and $\mathbf{j}=(0,1)$. In \mathbb{R}^{3}, we have an alternative notation $\mathbf{i}=(1,0,0), \mathbf{j}=(0,1,0)$, and $\mathbf{k}=(0,0,1)$.

Length and distance

Definition. The length of a vector
$\mathbf{v}=\left(v_{1}, v_{2}, \ldots, v_{n}\right) \in \mathbb{R}^{n}$ is

$$
|\mathbf{v}|=\sqrt{v_{1}^{2}+v_{2}^{2}+\cdots+v_{n}^{2}} .
$$

The distance between vectors (or points) \mathbf{x} and \mathbf{y} is $|\mathbf{y}-\mathbf{x}|$.

Properties of length:
$|\mathbf{x}| \geq 0, \quad|\mathbf{x}|=0$ only if $\mathbf{x}=\mathbf{0}$
(positivity)
$|r \mathbf{x}|=|r||\mathbf{x}|$
(homogeneity)
$|\mathbf{x}+\mathbf{y}| \leq|\mathbf{x}|+|\mathbf{y}|$
(triangle inequality)

Dot product

Definition. The dot product of vectors
$\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ and $\mathbf{y}=\left(y_{1}, y_{2}, \ldots, y_{n}\right)$ is

$$
\mathbf{x} \cdot \mathbf{y}=x_{1} y_{1}+x_{2} y_{2}+\cdots+x_{n} y_{n}=\sum_{k=1}^{n} x_{k} y_{k}
$$

Properties of dot product:
$\mathbf{x} \cdot \mathbf{x} \geq 0, \mathbf{x} \cdot \mathbf{x}=0$ only if $\mathbf{x}=\mathbf{0}$
(positivity)
$x \cdot y=y \cdot x$
(symmetry)
$(\mathbf{x}+\mathbf{y}) \cdot \mathbf{z}=\mathbf{x} \cdot \mathbf{z}+\mathbf{y} \cdot \mathbf{z}$
$(r \mathbf{x}) \cdot \mathbf{y}=r(\mathbf{x} \cdot \mathbf{y})$
(distributive law)
(homogeneity)

Relations between lengths and dot products:

$$
|x|=\sqrt{x \cdot x}
$$

$$
|\mathbf{x} \cdot \mathbf{y}| \leq|\mathbf{x}||\mathbf{y}| \quad \text { (Cauchy-Schwarz inequality) }
$$

$$
|\mathbf{x}-\mathbf{y}|^{2}=|\mathbf{x}|^{2}+|\mathbf{y}|^{2}-2 \mathbf{x} \cdot \mathbf{y}
$$

By the Cauchy-Schwarz inequality, for any nonzero vectors $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$ we have

$$
\cos \theta=\frac{\mathbf{x} \cdot \mathbf{y}}{|\mathbf{x}||\mathbf{y}|} \text { for some } 0 \leq \theta \leq \pi
$$

θ is called the angle between the vectors \mathbf{x} and \mathbf{y}.
The vectors \mathbf{x} and \mathbf{y} are said to be orthogonal (denoted $\mathbf{x} \perp \mathbf{y}$) if $\mathbf{x} \cdot \mathbf{y}=0$ (i.e., if $\theta=90^{\circ}$).

