MATH 311-504 Topics in Applied Mathematics Lecture 2-10:

Matrix of a linear transformation (continued). Eigenvalues and eigenvectors.

Matrix transformations

Theorem Suppose $L : \mathbb{R}^n \to \mathbb{R}^m$ is a linear map. Then there exists an $m \times n$ matrix A such that $L(\mathbf{x}) = A\mathbf{x}$ for all $\mathbf{x} \in \mathbb{R}^n$. Columns of A are vectors $L(\mathbf{e}_1), L(\mathbf{e}_2), \ldots, L(\mathbf{e}_n)$, where $\mathbf{e}_1, \mathbf{e}_2, \ldots, \mathbf{e}_n$ is the standard basis for \mathbb{R}^n .

$$\mathbf{y} = A\mathbf{x} \quad \Longleftrightarrow \quad \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$
$$\iff \quad \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{pmatrix} = x_1 \begin{pmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{pmatrix} + x_2 \begin{pmatrix} a_{12} \\ a_{22} \\ \vdots \\ a_{m2} \end{pmatrix} + \dots + x_n \begin{pmatrix} a_{1n} \\ a_{2n} \\ \vdots \\ a_{mn} \end{pmatrix}$$

Coordinates

If $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ is a basis for a vector space V, then any vector $\mathbf{v} \in V$ has a unique representation

$$\mathbf{v} = x_1\mathbf{v}_1 + x_2\mathbf{v}_2 + \cdots + x_n\mathbf{v}_n,$$

where $x_i \in \mathbb{R}$. The coefficients x_1, x_2, \ldots, x_n are called the **coordinates** of **v** with respect to the ordered basis $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n$.

The coordinate mapping

vector $\mathbf{v} \mapsto its$ coordinates (x_1, x_2, \dots, x_n)

provides a one-to-one correspondence between V and \mathbb{R}^n . Besides, this mapping is linear.

Matrix of a linear transformation

Let V, W be vector spaces and $f: V \to W$ be a linear map. Let $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ be a basis for V and $g_1: V \to \mathbb{R}^n$ be the coordinate mapping corresponding to this basis.

Let $\mathbf{w}_1, \mathbf{w}_2, \ldots, \mathbf{w}_m$ be a basis for W and $g_2 : W \to \mathbb{R}^m$ be the coordinate mapping corresponding to this basis.

The composition $g_2 \circ f \circ g_1^{-1}$ is a linear mapping of \mathbb{R}^n to \mathbb{R}^m . It is represented as $\mathbf{x} \mapsto A\mathbf{x}$, where A is an $m \times n$ matrix. A is called the **matrix of** f with respect to bases $\mathbf{v}_1, \ldots, \mathbf{v}_n$

and $\mathbf{w}_1, \ldots, \mathbf{w}_m$. Columns of A are coordinates of vectors $f(\mathbf{v}_1), \ldots, f(\mathbf{v}_n)$ with respect to the basis $\mathbf{w}_1, \ldots, \mathbf{w}_m$.

Example.
$$L: \mathbb{R}^2 \to \mathbb{R}^2$$
, $L \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$.

The matrix of L with respect to the standard basis $\mathbf{e}_1 = (1,0)$, $\mathbf{e}_2 = (0,1)$ is $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$.

The matrix w.r.t. the basis $\mathbf{v}_1 = (3, 1)$, $\mathbf{v}_2 = (2, 1)$ is $\begin{pmatrix} 2 & 1 \\ -1 & 0 \end{pmatrix}$ since $L(\mathbf{v}_1) = 2\mathbf{v}_1 - \mathbf{v}_2$, $L(\mathbf{v}_2) = \mathbf{v}_1$.

The matrix w.r.t. the basis $\mathbf{w}_1 = (0, 1)$, $\mathbf{w}_2 = (1, 0)$ is $\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$ since $L(\mathbf{w}_1) = \mathbf{w}_1 + \mathbf{w}_2$, $L(\mathbf{w}_2) = \mathbf{w}_2$.

Eigenvalues and eigenvectors

Definition. Let V be a vector space and $L: V \to V$ be a linear operator. A number λ is called an **eigenvalue** of the operator L if $L(\mathbf{v}) = \lambda \mathbf{v}$ for a nonzero vector $\mathbf{v} \in V$. The vector \mathbf{v} is called an **eigenvector** of L associated with the eigenvalue λ .

Remarks. • Alternative notation:

eigenvalue = characteristic value,

eigenvector = characteristic vector.

• The zero vector is never considered an eigenvector.

• If V is a functional space then eigenvectors are also called **eigenfunctions**.

Example.
$$L: \mathbb{R}^2 \to \mathbb{R}^2$$
, $L\begin{pmatrix} x\\ y \end{pmatrix} = \begin{pmatrix} 2 & 0\\ 0 & 3 \end{pmatrix} \begin{pmatrix} x\\ y \end{pmatrix}$.
 $\begin{pmatrix} 2 & 0\\ 0 & 3 \end{pmatrix} \begin{pmatrix} 1\\ 0 \end{pmatrix} = \begin{pmatrix} 2\\ 0 \end{pmatrix} = 2 \begin{pmatrix} 1\\ 0 \end{pmatrix}$,
 $\begin{pmatrix} 2 & 0\\ 0 & 3 \end{pmatrix} \begin{pmatrix} 0\\ -2 \end{pmatrix} = \begin{pmatrix} 0\\ -6 \end{pmatrix} = 3 \begin{pmatrix} 0\\ -2 \end{pmatrix}$.

Hence (1, 0) is the eigenvector of *L* associated with the eigenvalue 2 while (0, -2) is the eigenvector of *L* associated with the eigenvalue 3.

Remark. Eigenvalues and eigenvectors of a matrix transformation $L : \mathbb{R}^n \to \mathbb{R}^n$, $L(\mathbf{x}) = A\mathbf{x}$ are also called eigenvalues and eigenvectors of the matrix A.

Example.
$$L : \mathbb{R}^2 \to \mathbb{R}^2$$
, $L \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$.
 $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$, $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$.

Hence (1, 1) is the eigenvector of L associated with the eigenvalue 1 while (1, -1) is the eigenvector of L associated with the eigenvalue -1.

Vectors $\mathbf{v}_1 = (1, 1)$ and $\mathbf{v}_2 = (1, -1)$ form a basis for \mathbb{R}^2 . The matrix of L with respect to this basis is $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ since $L(\mathbf{v}_1) = \mathbf{v}_1$, $L(\mathbf{v}_2) = -\mathbf{v}_2$.

Eigenspaces

Let $L: V \to V$ be a linear operator. For any $\lambda \in \mathbb{R}$, let V_{λ} denotes the set of all eigenvectors of L associated with the eigenvalue λ .

A vector $\mathbf{v} \in V$ belongs to V_{λ} if $\mathbf{v} \neq \mathbf{0}$ and $L(\mathbf{v}) = \lambda \mathbf{v}$. Then $(L - \lambda)\mathbf{v} = \mathbf{0}$, where $L - \lambda$ denotes the linear operator $\mathbf{v} \mapsto L(\mathbf{v}) - \lambda \mathbf{v}$.

Thus eigenvectors from V_{λ} are nonzero vectors from the null-space $\text{Null}(L - \lambda)$.

 $\lambda \in \mathbb{R}$ is an eigenvalue of *L* if $\operatorname{Null}(L - \lambda) \neq \{\mathbf{0}\}$. If $\operatorname{Null}(L - \lambda) \neq \{\mathbf{0}\}$ then it is called the **eigenspace** of *L* associated with the eigenvalue λ .

How to find eigenvalues and eigenvectors?

 $L: \mathbb{R}^n \to \mathbb{R}^n$, $L(\mathbf{x}) = A\mathbf{x}$, where $A \in \mathcal{M}_{n,n}(\mathbb{R})$. $(L - \lambda)(\mathbf{x}) = (A - \lambda I)\mathbf{x}$ for all $\lambda \in \mathbb{R}$ and $\mathbf{x} \in \mathbb{R}^n$. λ is an eigenvalue \iff the matrix $A - \lambda I$ is not invertible $\iff \det(A - \lambda I) = 0$

Definition. det $(A - \lambda I) = 0$ is called the characteristic equation of the matrix A.

Eigenvalues λ of A are roots of the characteristic equation. Associated eigenvectors of A are nonzero solutions of the equation $(A - \lambda I)\mathbf{x} = \mathbf{0}$.

Example.
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
.
 $det(A - \lambda I) = \begin{vmatrix} a - \lambda & b \\ c & d - \lambda \end{vmatrix}$
 $= (a - \lambda)(d - \lambda) - bc$
 $= \lambda^2 - (a + d)\lambda + (ad - bc)$.

Example.
$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}.$$
$$det(A - \lambda I) = \begin{vmatrix} a_{11} - \lambda & a_{12} & a_{13} \\ a_{21} & a_{22} - \lambda & a_{23} \\ a_{31} & a_{32} & a_{33} - \lambda \end{vmatrix}$$
$$= -\lambda^3 + c_1\lambda^2 - c_2\lambda + c_3,$$
where $c_1 = a_{11} + a_{22} + a_{33}$ (the trace of A),
 $c_2 = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} + \begin{vmatrix} a_{11} & a_{13} \\ a_{31} & a_{33} \end{vmatrix} + \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix},$ $c_3 = det A.$

Example.
$$A = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$$
.
Characteristic equation: $\begin{vmatrix} 2-\lambda & 1 \\ 1 & 2-\lambda \end{vmatrix} = 0$.
 $(2-\lambda)^2 - 1 = 0 \implies \lambda_1 = 1, \ \lambda_2 = 3$.
 $(A-I)\mathbf{x} = \mathbf{0} \iff \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$
 $\iff \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \iff x + y = 0$

The general solution is (-t, t) = t(-1, 1), $t \in \mathbb{R}$. Thus $\mathbf{v}_1 = (-1, 1)$ is an eigenvector associated with the eigenvalue 1. The corresponding eigenspace is the line spanned by \mathbf{v}_1 .

$$(A-3I)\mathbf{x} = \mathbf{0} \iff \begin{pmatrix} -1 & 1\\ 1 & -1 \end{pmatrix} \begin{pmatrix} x\\ y \end{pmatrix} = \begin{pmatrix} 0\\ 0 \end{pmatrix}$$
$$\iff \begin{pmatrix} 1 & -1\\ 0 & 0 \end{pmatrix} \begin{pmatrix} x\\ y \end{pmatrix} = \begin{pmatrix} 0\\ 0 \end{pmatrix} \iff x-y = \mathbf{0}.$$

The general solution is (t, t) = t(1, 1), $t \in \mathbb{R}$. Thus $\mathbf{v}_2 = (1, 1)$ is an eigenvector associated with the eigenvalue 3. The corresponding eigenspace is the line spanned by \mathbf{v}_2 .

Summary.
$$A = \begin{pmatrix} 2 & 1 \ 1 & 2 \end{pmatrix}$$
.

- The matrix A has two eigenvalues: 1 and 3.
- The eigenspace of A associated with the eigenvalue 1 is the line t(-1, 1).

• The eigenspace of A associated with the eigenvalue 3 is the line t(1, 1).

• Eigenvectors $\mathbf{v}_1 = (-1, 1)$ and $\mathbf{v}_2 = (1, 1)$ of the matrix A form an orthogonal basis for \mathbb{R}^2 .

• Geometrically, the mapping $\mathbf{x} \mapsto A\mathbf{x}$ is a stretch by a factor of 3 away from the line x + y = 0 in the orthogonal direction.