MATH 311-504
Topics in Applied Mathematics
Lecture 2-10:
Matrix of a linear transformation (continued). Eigenvalues and eigenvectors.

Matrix transformations

Theorem Suppose $L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is a linear map. Then there exists an $m \times n$ matrix A such that $L(\mathbf{x})=A \mathbf{x}$ for all $\mathbf{x} \in \mathbb{R}^{n}$. Columns of A are vectors $L\left(\mathbf{e}_{1}\right), L\left(\mathbf{e}_{2}\right), \ldots, L\left(\mathbf{e}_{n}\right)$, where $\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{n}$ is the standard basis for \mathbb{R}^{n}.

$$
\begin{gathered}
\mathbf{y}=A \mathbf{x} \Longleftrightarrow\left(\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{m}
\end{array}\right)=\left(\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \ldots & a_{m n}
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right) \\
\Longleftrightarrow\left(\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{m}
\end{array}\right)=x_{1}\left(\begin{array}{c}
a_{11} \\
a_{21} \\
\vdots \\
a_{m 1}
\end{array}\right)+x_{2}\left(\begin{array}{c}
a_{12} \\
a_{22} \\
\vdots \\
a_{m 2}
\end{array}\right)+\cdots+x_{n}\left(\begin{array}{c}
a_{1 n} \\
a_{2 n} \\
\vdots \\
a_{m n}
\end{array}\right)
\end{gathered}
$$

Coordinates

If $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ is a basis for a vector space V, then any vector $\mathbf{v} \in V$ has a unique representation

$$
\mathbf{v}=x_{1} \mathbf{v}_{1}+x_{2} \mathbf{v}_{2}+\cdots+x_{n} \mathbf{v}_{n}
$$

where $x_{i} \in \mathbb{R}$. The coefficients $x_{1}, x_{2}, \ldots, x_{n}$ are called the coordinates of \mathbf{v} with respect to the ordered basis $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$.

The coordinate mapping

$$
\text { vector } \mathbf{v} \mapsto \text { its coordinates }\left(x_{1}, x_{2}, \ldots, x_{n}\right)
$$

provides a one-to-one correspondence between V and \mathbb{R}^{n}. Besides, this mapping is linear.

Matrix of a linear transformation

Let V, W be vector spaces and $f: V \rightarrow W$ be a linear map. Let $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$ be a basis for V and $g_{1}: V \rightarrow \mathbb{R}^{n}$ be the coordinate mapping corresponding to this basis.

Let $\mathbf{w}_{1}, \mathbf{w}_{2}, \ldots, \mathbf{w}_{m}$ be a basis for W and $g_{2}: W \rightarrow \mathbb{R}^{m}$ be the coordinate mapping corresponding to this basis.

The composition $g_{2} \circ f \circ g_{1}^{-1}$ is a linear mapping of \mathbb{R}^{n} to \mathbb{R}^{m}. It is represented as $\mathbf{x} \mapsto A \mathbf{x}$, where A is an $m \times n$ matrix.
A is called the matrix of f with respect to bases $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ and $\mathbf{w}_{1}, \ldots, \mathbf{w}_{m}$. Columns of A are coordinates of vectors $f\left(\mathbf{v}_{1}\right), \ldots, f\left(\mathbf{v}_{n}\right)$ with respect to the basis $\mathbf{w}_{1}, \ldots, \mathbf{w}_{m}$.

Example. $L: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, \quad L\binom{x}{y}=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)\binom{x}{y}$.
The matrix of L with respect to the standard basis
$\mathbf{e}_{1}=(1,0), \mathbf{e}_{2}=(0,1)$ is $\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$.
The matrix w.r.t. the basis $\mathbf{v}_{1}=(3,1), \mathbf{v}_{2}=(2,1)$
is $\left(\begin{array}{rr}2 & 1 \\ -1 & 0\end{array}\right)$ since $L\left(\mathbf{v}_{1}\right)=2 \mathbf{v}_{1}-\mathbf{v}_{2}, L\left(\mathbf{v}_{2}\right)=\mathbf{v}_{1}$.
The matrix w.r.t. the basis $\mathbf{w}_{1}=(0,1), \mathbf{w}_{2}=(1,0)$
is $\left(\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right)$ since $L\left(\mathbf{w}_{1}\right)=\mathbf{w}_{1}+\mathbf{w}_{2}, L\left(\mathbf{w}_{2}\right)=\mathbf{w}_{2}$.

Eigenvalues and eigenvectors

Definition. Let V be a vector space and $L: V \rightarrow V$ be a linear operator. A number λ is called an eigenvalue of the operator L if $L(\mathbf{v})=\lambda \mathbf{v}$ for a nonzero vector $\mathbf{v} \in V$. The vector \mathbf{v} is called an eigenvector of L associated with the eigenvalue λ.

Remarks. - Alternative notation: eigenvalue $=$ characteristic value, eigenvector $=$ characteristic vector.

- The zero vector is never considered an eigenvector.
- If V is a functional space then eigenvectors are also called eigenfunctions.

Example. $L: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, \quad L\binom{x}{y}=\left(\begin{array}{ll}2 & 0 \\ 0 & 3\end{array}\right)\binom{x}{y}$.

$$
\begin{aligned}
\left(\begin{array}{ll}
2 & 0 \\
0 & 3
\end{array}\right)\binom{1}{0} & =\binom{2}{0}=2\binom{1}{0}, \\
\left(\begin{array}{ll}
2 & 0 \\
0 & 3
\end{array}\right)\binom{0}{-2} & =\binom{0}{-6}=3\binom{0}{-2} .
\end{aligned}
$$

Hence $(1,0)$ is the eigenvector of L associated with the eigenvalue 2 while $(0,-2)$ is the eigenvector of L associated with the eigenvalue 3 .

Remark. Eigenvalues and eigenvectors of a matrix transformation $L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}, L(\mathbf{x})=A \mathbf{x}$ are also called eigenvalues and eigenvectors of the matrix A.

Example. $L: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, \quad L\binom{x}{y}=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)\binom{x}{y}$.
$\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)\binom{1}{1}=\binom{1}{1}, \quad\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)\binom{1}{-1}=\binom{-1}{1}$.
Hence $(1,1)$ is the eigenvector of L associated with the eigenvalue 1 while $(1,-1)$ is the eigenvector of L associated with the eigenvalue -1 .
Vectors $\mathbf{v}_{1}=(1,1)$ and $\mathbf{v}_{2}=(1,-1)$ form a basis for \mathbb{R}^{2}. The matrix of L with respect to this basis is $\left(\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right)$ since $L\left(\mathbf{v}_{1}\right)=\mathbf{v}_{1}, L\left(\mathbf{v}_{2}\right)=-\mathbf{v}_{2}$.

Eigenspaces

Let $L: V \rightarrow V$ be a linear operator.
For any $\lambda \in \mathbb{R}$, let V_{λ} denotes the set of all eigenvectors of L associated with the eigenvalue λ.
A vector $\mathbf{v} \in V$ belongs to V_{λ} if $\mathbf{v} \neq \mathbf{0}$ and $L(\mathbf{v})=\lambda \mathbf{v}$. Then $(L-\lambda) \mathbf{v}=\mathbf{0}$, where $L-\lambda$ denotes the linear operator $\mathbf{v} \mapsto L(\mathbf{v})-\lambda \mathbf{v}$.
Thus eigenvectors from V_{λ} are nonzero vectors from the null-space $\operatorname{Null}(L-\lambda)$.
$\lambda \in \mathbb{R}$ is an eigenvalue of L if $\operatorname{Null}(L-\lambda) \neq\{\mathbf{0}\}$.
If $\operatorname{Null}(L-\lambda) \neq\{\mathbf{0}\}$ then it is called the eigenspace of L associated with the eigenvalue λ.

How to find eigenvalues and eigenvectors?

$L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}, \quad L(\mathbf{x})=A \mathbf{x}$, where $A \in \mathcal{M}_{n, n}(\mathbb{R})$.
$(L-\lambda)(\mathbf{x})=(A-\lambda /) \mathbf{x}$ for all $\lambda \in \mathbb{R}$ and $\mathbf{x} \in \mathbb{R}^{n}$.
λ is an eigenvalue \Longleftrightarrow the matrix $A-\lambda I$ is not invertible $\Longleftrightarrow \operatorname{det}(A-\lambda I)=0$

Definition. $\operatorname{det}(A-\lambda I)=0$ is called the characteristic equation of the matrix A.

Eigenvalues λ of A are roots of the characteristic equation. Associated eigenvectors of A are nonzero solutions of the equation $(A-\lambda I) \mathbf{x}=\mathbf{0}$.

Example. $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$.

$$
\begin{aligned}
& \operatorname{det}(A-\lambda I)=\left|\begin{array}{cc}
a-\lambda & b \\
c & d-\lambda
\end{array}\right| \\
& =(a-\lambda)(d-\lambda)-b c \\
& =\lambda^{2}-(a+d) \lambda+(a d-b c)
\end{aligned}
$$

Example. $\quad A=\left(\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right)$.

$$
\begin{gathered}
\operatorname{det}(A-\lambda I)=\left|\begin{array}{ccc}
a_{11}-\lambda & a_{12} & a_{13} \\
a_{21} & a_{22}-\lambda & a_{23} \\
a_{31} & a_{32} & a_{33}-\lambda
\end{array}\right| \\
=-\lambda^{3}+c_{1} \lambda^{2}-c_{2} \lambda+c_{3},
\end{gathered}
$$

where $c_{1}=a_{11}+a_{22}+a_{33}$ (the trace of A),
$c_{2}=\left|\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right|+\left|\begin{array}{ll}a_{11} & a_{13} \\ a_{31} & a_{33}\end{array}\right|+\left|\begin{array}{ll}a_{22} & a_{23} \\ a_{32} & a_{33}\end{array}\right|$,
$c_{3}=\operatorname{det} A$.

Example. $\quad A=\left(\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right)$.
Characteristic equation: $\left|\begin{array}{cc}2-\lambda & 1 \\ 1 & 2-\lambda\end{array}\right|=0$.
$(2-\lambda)^{2}-1=0 \quad \Longrightarrow \quad \lambda_{1}=1, \quad \lambda_{2}=3$.

$$
\begin{aligned}
& (A-I) \mathbf{x}=\mathbf{0} \Longleftrightarrow\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right)\binom{x}{y}=\binom{0}{0} \\
& \Longleftrightarrow\left(\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right)\binom{x}{y}=\binom{0}{0} \Longleftrightarrow x+y=0
\end{aligned}
$$

The general solution is $(-t, t)=t(-1,1), t \in \mathbb{R}$.
Thus $\mathbf{v}_{1}=(-1,1)$ is an eigenvector associated with the eigenvalue 1 . The corresponding eigenspace is the line spanned by \mathbf{v}_{1}.

$$
\begin{aligned}
& (A-3 /) \mathbf{x}=\mathbf{0} \Longleftrightarrow\left(\begin{array}{rr}
-1 & 1 \\
1 & -1
\end{array}\right)\binom{x}{y}=\binom{0}{0} \\
& \Longleftrightarrow\left(\begin{array}{rr}
1 & -1 \\
0 & 0
\end{array}\right)\binom{x}{y}=\binom{0}{0} \Longleftrightarrow x-y=0 .
\end{aligned}
$$

The general solution is $(t, t)=t(1,1), \quad t \in \mathbb{R}$.
Thus $\mathbf{v}_{2}=(1,1)$ is an eigenvector associated with the eigenvalue 3. The corresponding eigenspace is the line spanned by \mathbf{v}_{2}.

Summary. $\quad A=\left(\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right)$.

- The matrix A has two eigenvalues: 1 and 3 .
- The eigenspace of A associated with the eigenvalue 1 is the line $t(-1,1)$.
- The eigenspace of A associated with the eigenvalue 3 is the line $t(1,1)$.
- Eigenvectors $\mathbf{v}_{1}=(-1,1)$ and $\mathbf{v}_{2}=(1,1)$ of the matrix A form an orthogonal basis for \mathbb{R}^{2}.
- Geometrically, the mapping $\mathbf{x} \mapsto A \mathbf{x}$ is a stretch by a factor of 3 away from the line $x+y=0$ in the orthogonal direction.

