MATH 311-504
Topics in Applied Mathematics
Lecture 2-11:

Eigenvalues and eigenvectors (continued).
Bases of eigenvectors.



Eigenvalues and eigenvectors

Definition. Let V be a vector spaceand L:V — V
be a linear operator. A number A is called an
eigenvalue of the operator L if |L(v) = Av| for a
nonzero vector v € V. The vector v is called an
eigenvector of L associated with the eigenvalue \.

Eigenvalues and eigenvectors of a matrix
transformation L: R" — R", L(x) = Ax are also
called eigenvalues and eigenvectors of the matrix A.



Eigenspaces

Let L:V — V be a linear operator. For any

A € R let V) denotes the set of all solutions of the
equation L(x) = Ax.

V), is a subspace of V since V) is the null-space of

the linear operator x +— L(x) — Ax.

V/\ consists of all eigenvectors of L associated with

the eigenvalue A plus the zero vector. In particular,
A is an eigenvalue of L if and only if V) # {0}.

If V) # {0} then it is called the eigenspace of L
associated with the eigenvalue .



Examples. « D : C*(R) — C>(R), D(f)="f".

A nonzero function f € C*(R) is an eigenfunction
of the operator D associated with an eigenvalue A if
f'(x) = Af(x) forall x € R. That s, if

f(x) = ce™, where c is a nonzero constant.

Thus each A € R is an eigenvalue of D.
The corresponding eigenspace is spanned by e’*.
e Dy:P—P, Di(p)=1p.

The only eigenvalue of Dy is 0. The corresponding
eigenspace consists of costants.



Eigenvalues and eigenvectors of a matrix

Let A be an n-by-n matrix and x € R"” be a column
vector. Then Ax = Ax <= (A—A)x=0.

A is an eigenvalue <= the matrix A — A/ is not
invertible <= det(A— \/) =0

Definition. det(A — Al) =0 s called the
characteristic equation of the matrix A.

Eigenvalues A of A are roots of the characteristic
equation. Associated eigenvectors of A are nonzero
solutions of the equation (A — A/)x = 0.



a b
Example. A = (c d>'

det(A— /) =

a— A\ b
C d— )\

=(a—A)(d—A)— bc
=X —(a+d)\+ (ad — bc).



a1 d12 413
Example. A= do1 do2 a3
d31 d32 ds3

aig— A ap aiz
det(A — )\/) = ar an — A ans
as1 azp  az;— A

= —)\3 + Cl)\2 — CQ)\ + 3,

where ¢ = a11 + ax + ass (the trace of A),
dz2 43
d32 ds33

a1 4ai3
da31 4ass

a1 a1
dp1 a2

+

C =

c3 = det A.



Theorem. Let A = (a;) be an n-by-n matrix.
Then det(A— Al) is a polynomial of A of degree n:

det(A— M) = (=1)"\"+ A" 4 -« + crg A + .

Furthermore, (—1)""1c; = a;y +an + -+ + am
and ¢, = det A.

Corollary Any n-by-n matrix has at most n
eigenvalues.



2 1
Example. A = <1 2).

e The matrix A has two eigenvalues: 1 and 3.

e The eigenspace of A associated with the
eigenvalue 1 is the line t(—1,1).

e The eigenspace of A associated with the
eigenvalue 3 is the line t(1,1).

e Eigenvectors v; = (—1,1) and v, = (1,1) of
the matrix A form a basis for R.
e Geometrically, the mapping x — Ax is a stretch

by a factor of 3 away from the line x + y =0 in
the orthogonal direction.



11 -1
Example. A= |11 1
00 2
Characteristic equation:
1—-X 1 -1
1 1-Xx 1 |=0.

0 0 2—-A
Expand the determinant by the 3rd row:
1—-Xx 1
1 1-—-A
((1—)\)2—1)(2—)\):0 — —-AM2-))?=0
— AN =0, =2

(2-2)

o



11 -1 X 0
Ax=0 <= (11 1 yl =10
00 2 z 0

Convert the matrix to reduced form:
11 -1 11 —1 110
11 1} —(00 2] —(0O01
00 2 00 2 00O

Ax =0 <— {X+y:0’
z=0.

The general solution is (—t, t,0) = t(—1,1,0),

t € R. Thus vi = (—1,1,0) is an eigenvector
associated with the eigenvalue 0. The
corresponding eigenspace is the line spanned by v;.



-1 1 -1\ [/x 0
(A-2N)x=0 <~ 1 -1 1](y]=1]0
0 0 0/ \z 0
1 -1 1\ /x 0
<~ (0 0O0]ly]=10] << x—y+2z=0.
0 00/ \z 0

The general solutionis x=t—s, y=t, z=s5s,
where t,s € R. Equivalently,

x=(t—s,t,s)=1t(1,1,0)+s(—1,0,1).

Thus v, =(1,1,0) and v3 =(—1,0,1) are
eigenvectors associated with the eigenvalue 2.

The corresponding eigenspace is the plane spanned
by v, and vs.



11 -1
Summary. A=111 1
00 2

e The matrix A has two eigenvalues: 0 and 2.

e The eigenvalue 0 is simple: the associated
eigenspace is a line.

e The eigenvalue 2 is of multiplicity 2: the
associated eigenspace is a plane.

e Eigenvectors v; = (—1,1,0), v = (1,1,0), and
v3 = (—1,0,1) of the matrix A form a basis for R3.
e Geometrically, the map x — Ax is the projection

on the plane Span(vy,v3) along lines parallel to v,
with the subsequent scaling by a factor of 2.



Systems of linear ODEs

Basis consisting of eigenvectors of a matrix is useful
when solving systems of linear ODEs with constant
coefficients.

dx

& Xty—2z
Example. % =X4+y+z,
%:22.

Let v =(x,y,z). Then the system can be
rewritten in vector form

dv 11 -1
o = Av, where A=1|11 1
00 2



Vectors v; = (—1,1,0), v =(1,1,0), and

v3 = (—1,0,1) form a basis for R3.

Therefore the vector-function v(t) is uniquely
represented as v(t) = rn(t)vi + rn(t)va + r3(t)vs,
where ri(t), r(t), and r3(t) are scalar functions.

‘:!‘t’ = drlv + dr2 o+ dr3V3, Av = 2rvy + 213Vs.

dl’1 _
dv dt O’
- — dn _
i Av <— = =2n,

dr3 _

dr 2/’3.

The general solution' n(t) =c, n(t) = ce*,

r(t) = cze?, where ci, &, c3 are arbitrary
constants.



Thus v(t) = rn(t)vi + rn(t)ve + r3(t)vs =
= c1(—1,1,0) + ce?!(1,1,0) + c3€?*(—1,0,1).

¢ dx

3 X +y—2z,
System: < Z{ =x+y+z
d
\ d—i = 2z.
( x(t)=—ca+ (e — C3)62t’
Solution: <{ y(t) = ¢ + ce?,
| z(t) = cze”.



Theorem If vy, v,, ..., v, are eigenvectors of a linear
operator L associated with distinct eigenvalues A1, Ao, ..., A,
then vy, vy, ... v, are linearly independent.

Proof in the case k = 2: Assume that vy and v, are linearly
dependent. Then v; = tv, for some t € R. It follows that
L(Vl) = M\vy. But L(Vl) = A\Vi = A\vi = vy
— (A —X)vi =0 = v; =0, a contradiction.

Proof in the case k = 3: Suppose that t;v; + tov, + t3v3 = 0
for some ty,t,t3 € R. Then L(tyvy + tova + t3v3) =0
= tL(v1) + tal(vo) + t3L(v3) =0
= HA\Vv1 + bAovs + tz3Azvy = 0.
Subtract A3 times the first equality from the last equality:
t1(A1 — A3)vi + (Ao — A3)vp = 0.

By the above v; and v, are linearly independent. Therefore
1.'1()\1—)\3):1.'2()\2—)\3):0 — Hh=tb=0 — t3=0.



Corollary 1 Suppose A is an nxn matrix that has
n distinct eigenvalues. Then R” has a basis
consisting of eigenvectors of A.

Proof: Let A1, \»,..., A, be distinct eigenvalues of A. Any
A; has an associated eigenvector v;. By the theorem, vectors
V1,Vo,...,V, are linearly independent. Therefore they form a
basis for R".

Corollary 2 If A, Ay, ..., A are distinct real
numbers, then the functions e’ e** ... eMX are
linearly independent.

Proof: Consider a linear operator D : C*(R) — C>*(R)
given by D(f) = f’. We have that e’ ... e are
eigenfunctions of D associated with distinct eigenvalues
ALy -y Ak



