MATH 311-504
 Topics in Applied Mathematics

Lecture 2-11:

Eigenvalues and eigenvectors (continued). Bases of eigenvectors.

Eigenvalues and eigenvectors

Definition. Let V be a vector space and $L: V \rightarrow V$ be a linear operator. A number λ is called an eigenvalue of the operator L if $L(\mathbf{v})=\lambda \mathbf{v}$ for a nonzero vector $\mathbf{v} \in V$. The vector \mathbf{v} is called an eigenvector of L associated with the eigenvalue λ.

Eigenvalues and eigenvectors of a matrix transformation $L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}, L(\mathbf{x})=A \mathbf{x}$ are also called eigenvalues and eigenvectors of the matrix A.

Eigenspaces

Let $L: V \rightarrow V$ be a linear operator. For any
$\lambda \in \mathbb{R}$ let V_{λ} denotes the set of all solutions of the equation $L(\mathbf{x})=\lambda \mathbf{x}$.
V_{λ} is a subspace of V since V_{λ} is the null-space of the linear operator $\mathbf{x} \mapsto L(\mathbf{x})-\lambda \mathbf{x}$.
V_{λ} consists of all eigenvectors of L associated with the eigenvalue λ plus the zero vector. In particular, λ is an eigenvalue of L if and only if $V_{\lambda} \neq\{\mathbf{0}\}$.
If $V_{\lambda} \neq\{\mathbf{0}\}$ then it is called the eigenspace of L associated with the eigenvalue λ.

Examples. • $D: C^{\infty}(\mathbb{R}) \rightarrow C^{\infty}(\mathbb{R}), \quad D(f)=f^{\prime}$.
A nonzero function $f \in C^{\infty}(\mathbb{R})$ is an eigenfunction of the operator D associated with an eigenvalue λ if $f^{\prime}(x)=\lambda f(x)$ for all $x \in \mathbb{R}$. That is, if $f(x)=c e^{\lambda x}$, where c is a nonzero constant.
Thus each $\lambda \in \mathbb{R}$ is an eigenvalue of D.
The corresponding eigenspace is spanned by $e^{\lambda x}$.

- $D_{0}: \mathcal{P} \rightarrow \mathcal{P}, \quad D_{0}(p)=p^{\prime}$.

The only eigenvalue of D_{0} is 0 . The corresponding eigenspace consists of costants.

Eigenvalues and eigenvectors of a matrix

Let A be an n-by- n matrix and $\mathbf{x} \in \mathbb{R}^{n}$ be a column vector. Then $A \mathbf{x}=\lambda \mathbf{x} \Longleftrightarrow(A-\lambda I) \mathbf{x}=\mathbf{0}$.
λ is an eigenvalue \Longleftrightarrow the matrix $A-\lambda /$ is not invertible $\Longleftrightarrow \operatorname{det}(A-\lambda I)=0$

Definition. $\operatorname{det}(A-\lambda I)=0$ is called the characteristic equation of the matrix A.

Eigenvalues λ of A are roots of the characteristic equation. Associated eigenvectors of A are nonzero solutions of the equation $(A-\lambda I) \mathbf{x}=\mathbf{0}$.

Example. $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$.

$$
\begin{aligned}
& \operatorname{det}(A-\lambda I)=\left|\begin{array}{cc}
a-\lambda & b \\
c & d-\lambda
\end{array}\right| \\
& =(a-\lambda)(d-\lambda)-b c \\
& =\lambda^{2}-(a+d) \lambda+(a d-b c)
\end{aligned}
$$

Example. $A=\left(\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right)$.

$$
\begin{gathered}
\operatorname{det}(A-\lambda I)=\left|\begin{array}{ccc}
a_{11}-\lambda & a_{12} & a_{13} \\
a_{21} & a_{22}-\lambda & a_{23} \\
a_{31} & a_{32} & a_{33}-\lambda
\end{array}\right| \\
=-\lambda^{3}+c_{1} \lambda^{2}-c_{2} \lambda+c_{3},
\end{gathered}
$$

where $c_{1}=a_{11}+a_{22}+a_{33} \quad($ the trace of $A)$,
$c_{2}=\left|\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right|+\left|\begin{array}{ll}a_{11} & a_{13} \\ a_{31} & a_{33}\end{array}\right|+\left|\begin{array}{ll}a_{22} & a_{23} \\ a_{32} & a_{33}\end{array}\right|$,
$c_{3}=\operatorname{det} A$.

Theorem. Let $A=\left(a_{i j}\right)$ be an n-by- n matrix. Then $\operatorname{det}(A-\lambda I)$ is a polynomial of λ of degree n : $\operatorname{det}(A-\lambda I)=(-1)^{n} \lambda^{n}+c_{1} \lambda^{n-1}+\cdots+c_{n-1} \lambda+c_{n}$.

Furthermore, $(-1)^{n-1} c_{1}=a_{11}+a_{22}+\cdots+a_{n n}$ and $c_{n}=\operatorname{det} A$.

Corollary Any n-by- n matrix has at most n eigenvalues.

Example. $\quad A=\left(\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right)$.

- The matrix A has two eigenvalues: 1 and 3 .
- The eigenspace of A associated with the eigenvalue 1 is the line $t(-1,1)$.
- The eigenspace of A associated with the eigenvalue 3 is the line $t(1,1)$.
- Eigenvectors $\mathbf{v}_{1}=(-1,1)$ and $\mathbf{v}_{2}=(1,1)$ of the matrix A form a basis for \mathbb{R}^{2}.
- Geometrically, the mapping $\mathbf{x} \mapsto A \mathbf{x}$ is a stretch by a factor of 3 away from the line $x+y=0$ in the orthogonal direction.

Example. $A=\left(\begin{array}{rrr}1 & 1 & -1 \\ 1 & 1 & 1 \\ 0 & 0 & 2\end{array}\right)$.
Characteristic equation:

$$
\left|\begin{array}{ccc}
1-\lambda & 1 & -1 \\
1 & 1-\lambda & 1 \\
0 & 0 & 2-\lambda
\end{array}\right|=0 .
$$

Expand the determinant by the 3rd row:

$$
(2-\lambda)\left|\begin{array}{cc}
1-\lambda & 1 \\
1 & 1-\lambda
\end{array}\right|=0
$$

$\left((1-\lambda)^{2}-1\right)(2-\lambda)=0 \Longleftrightarrow-\lambda(2-\lambda)^{2}=0$
$\Longrightarrow \lambda_{1}=0, \quad \lambda_{2}=2$.

$$
A \mathbf{x}=\mathbf{0} \Longleftrightarrow\left(\begin{array}{rrr}
1 & 1 & -1 \\
1 & 1 & 1 \\
0 & 0 & 2
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

Convert the matrix to reduced form:

$$
\begin{gathered}
\left(\begin{array}{rrr}
1 & 1 & -1 \\
1 & 1 & 1 \\
0 & 0 & 2
\end{array}\right) \rightarrow\left(\begin{array}{rrr}
1 & 1 & -1 \\
0 & 0 & 2 \\
0 & 0 & 2
\end{array}\right) \rightarrow\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right) \\
A \mathbf{x}=\mathbf{0}
\end{gathered} \Longleftrightarrow\left\{\begin{array}{l}
x+y=0, \\
z=0 .
\end{array}\right.
$$

The general solution is $(-t, t, 0)=t(-1,1,0)$, $t \in \mathbb{R}$. Thus $\mathbf{v}_{1}=(-1,1,0)$ is an eigenvector associated with the eigenvalue 0 . The corresponding eigenspace is the line spanned by \mathbf{v}_{1}.
$(A-2 I) \mathbf{x}=\mathbf{0} \Longleftrightarrow\left(\begin{array}{rrr}-1 & 1 & -1 \\ 1 & -1 & 1 \\ 0 & 0 & 0\end{array}\right)\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)$
$\Longleftrightarrow\left(\begin{array}{rrr}1 & -1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right) \Longleftrightarrow x-y+z=0$.
The general solution is $x=t-s, \quad y=t, \quad z=s$, where $t, s \in \mathbb{R}$. Equivalently,

$$
\mathbf{x}=(t-s, t, s)=t(1,1,0)+s(-1,0,1)
$$

Thus $\mathbf{v}_{2}=(1,1,0)$ and $\mathbf{v}_{3}=(-1,0,1)$ are eigenvectors associated with the eigenvalue 2.
The corresponding eigenspace is the plane spanned by \mathbf{v}_{2} and \mathbf{v}_{3}.

Summary. $\quad A=\left(\begin{array}{rrr}1 & 1 & -1 \\ 1 & 1 & 1 \\ 0 & 0 & 2\end{array}\right)$.

- The matrix A has two eigenvalues: 0 and 2 .
- The eigenvalue 0 is simple: the associated eigenspace is a line.
- The eigenvalue 2 is of multiplicity 2 : the associated eigenspace is a plane.
- Eigenvectors $\mathbf{v}_{1}=(-1,1,0), \mathbf{v}_{2}=(1,1,0)$, and $\mathbf{v}_{3}=(-1,0,1)$ of the matrix A form a basis for \mathbb{R}^{3}.
- Geometrically, the map $\mathbf{x} \mapsto A \mathbf{x}$ is the projection on the plane $\operatorname{Span}\left(\mathbf{v}_{2}, \mathbf{v}_{3}\right)$ along lines parallel to \mathbf{v}_{1} with the subsequent scaling by a factor of 2 .

Systems of linear ODEs

Basis consisting of eigenvectors of a matrix is useful when solving systems of linear ODEs with constant coefficients.

Example. $\left\{\begin{array}{l}\frac{d x}{d t}=x+y-z, \\ \frac{d y}{d t}=x+y+z, \\ \frac{d z}{d t}=2 z .\end{array}\right.$
Let $\mathbf{v}=(x, y, z)$. Then the system can be rewritten in vector form

$$
\frac{d \mathbf{v}}{d t}=A \mathbf{v}, \text { where } A=\left(\begin{array}{rrr}
1 & 1 & -1 \\
1 & 1 & 1 \\
0 & 0 & 2
\end{array}\right)
$$

Vectors $\mathbf{v}_{1}=(-1,1,0), \mathbf{v}_{2}=(1,1,0)$, and $\mathbf{v}_{3}=(-1,0,1)$ form a basis for \mathbb{R}^{3}.
Therefore the vector-function $\mathbf{v}(t)$ is uniquely represented as $\mathbf{v}(t)=r_{1}(t) \mathbf{v}_{1}+r_{2}(t) \mathbf{v}_{2}+r_{3}(t) \mathbf{v}_{3}$, where $r_{1}(t), r_{2}(t)$, and $r_{3}(t)$ are scalar functions.

$$
\begin{aligned}
& \frac{d \mathbf{v}}{d t}=\frac{d r_{1}}{d t} \mathbf{v}_{1}+\frac{d r_{2}}{d t} \mathbf{v}_{2}+\frac{d r_{3}}{d t} \mathbf{v}_{3}, \quad A \mathbf{v}=2 r_{2} \mathbf{v}_{2}+2 r_{3} \mathbf{v}_{3} . \\
& \frac{d \mathbf{v}}{d t}=A \mathbf{v} \quad \Longleftrightarrow\left\{\begin{array}{l}
\frac{d r_{1}}{d t}=0 \\
\frac{d r_{2}}{d t}=2 r_{2} \\
\frac{d r_{3}}{d t}=2 r_{3}
\end{array}\right.
\end{aligned}
$$

The general solution: $r_{1}(t)=c_{1}, r_{2}(t)=c_{2} e^{2 t}$, $r_{3}(t)=c_{3} e^{2 t}$, where c_{1}, c_{2}, c_{3} are arbitrary constants.

Thus $\mathbf{v}(t)=r_{1}(t) \mathbf{v}_{1}+r_{2}(t) \mathbf{v}_{2}+r_{3}(t) \mathbf{v}_{3}=$
$=c_{1}(-1,1,0)+c_{2} e^{2 t}(1,1,0)+c_{3} e^{2 t}(-1,0,1)$.
System: $\left\{\begin{array}{l}\frac{d x}{d t}=x+y-z, \\ \frac{d y}{d t}=x+y+z, \\ \frac{d z}{d t}=2 z .\end{array}\right.$
Solution: $\left\{\begin{array}{l}x(t)=-c_{1}+\left(c_{2}-c_{3}\right) e^{2 t}, \\ y(t)=c_{1}+c_{2} e^{2 t}, \\ z(t)=c_{3} e^{2 t} .\end{array}\right.$

Theorem If $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}$ are eigenvectors of a linear operator L associated with distinct eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$, then $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}$ are linearly independent.

Proof in the case $k=2$: Assume that \mathbf{v}_{1} and \mathbf{v}_{2} are linearly dependent. Then $\mathbf{v}_{1}=t \mathbf{v}_{2}$ for some $t \in \mathbb{R}$. It follows that $L\left(\mathbf{v}_{1}\right)=\lambda_{2} \mathbf{v}_{1}$. But $L\left(\mathbf{v}_{1}\right)=\lambda_{1} \mathbf{v}_{1} \Longrightarrow \lambda_{1} \mathbf{v}_{1}=\lambda_{2} \mathbf{v}_{1}$ $\Longrightarrow\left(\lambda_{1}-\lambda_{2}\right) \mathbf{v}_{1}=\mathbf{0} \Longrightarrow \mathbf{v}_{1}=\mathbf{0}$, a contradiction.
Proof in the case $k=3$: Suppose that $t_{1} \mathbf{v}_{1}+t_{2} \mathbf{v}_{2}+t_{3} \mathbf{v}_{3}=\mathbf{0}$ for some $t_{1}, t_{2}, t_{3} \in \mathbb{R}$. Then $L\left(t_{1} \mathbf{v}_{1}+t_{2} \mathbf{v}_{2}+t_{3} \mathbf{v}_{3}\right)=\mathbf{0}$

$$
\begin{aligned}
& \Longrightarrow t_{1} L\left(\mathbf{v}_{1}\right)+t_{2} L\left(\mathbf{v}_{2}\right)+t_{3} L\left(\mathbf{v}_{3}\right)=\mathbf{0} \\
& \Longrightarrow t_{1} \lambda_{1} \mathbf{v}_{1}+t_{2} \lambda_{2} \mathbf{v}_{2}+t_{3} \lambda_{3} \mathbf{v}_{3}=\mathbf{0} .
\end{aligned}
$$

Subtract λ_{3} times the first equality from the last equality:

$$
t_{1}\left(\lambda_{1}-\lambda_{3}\right) \mathbf{v}_{1}+t_{2}\left(\lambda_{2}-\lambda_{3}\right) \mathbf{v}_{2}=\mathbf{0} .
$$

By the above \mathbf{v}_{1} and \mathbf{v}_{2} are linearly independent. Therefore $t_{1}\left(\lambda_{1}-\lambda_{3}\right)=t_{2}\left(\lambda_{2}-\lambda_{3}\right)=0 \Longrightarrow t_{1}=t_{2}=0 \Longrightarrow t_{3}=0$.

Corollary 1 Suppose A is an $n \times n$ matrix that has n distinct eigenvalues. Then \mathbb{R}^{n} has a basis consisting of eigenvectors of A.
Proof: Let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ be distinct eigenvalues of A. Any λ_{i} has an associated eigenvector \mathbf{v}_{i}. By the theorem, vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$ are linearly independent. Therefore they form a basis for \mathbb{R}^{n}.

Corollary 2 If $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$ are distinct real numbers, then the functions $e^{\lambda_{1} x}, e^{\lambda_{2} x}, \ldots, e^{\lambda_{k} x}$ are linearly independent.
Proof: Consider a linear operator $D: C^{\infty}(\mathbb{R}) \rightarrow C^{\infty}(\mathbb{R})$ given by $D(f)=f^{\prime}$. We have that $e^{\lambda_{1} x}, \ldots, e^{\lambda_{k} x}$ are eigenfunctions of D associated with distinct eigenvalues $\lambda_{1}, \ldots, \lambda_{k}$.

