MATH 311-504
 Topics in Applied Mathematics

Lecture 2-12:
 Bases of eigenvectors (continued).
 Change of coordinates.

Diagonalization

Let $L: V \rightarrow V$ be a linear operator.
Let $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$ be a basis for V and A be the matrix of the operator L with respect to this basis.

Theorem The matrix A is diagonal if and only if vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$ are eigenvectors of L. If this is the case, then the diagonal entries of the matrix A are the corresponding eigenvalues of L.

$$
L\left(\mathbf{v}_{i}\right)=\lambda_{i} \mathbf{v}_{i} \Longleftrightarrow A=\left(\begin{array}{llll}
\lambda_{1} & & & O \\
& \lambda_{2} & & \\
& & \ddots & \\
0 & & & \lambda_{n}
\end{array}\right)
$$

Eigenvalues and eigenvectors of a matrix

Eigenvalues λ of a square matrix A are roots of the characteristic equation $\operatorname{det}(A-\lambda I)=0$.
Associated eigenvectors of A are nonzero solutions of the equation $(A-\lambda I) \mathbf{x}=\mathbf{0}$.

Theorem Let A be an n-by- n matrix. Then $\operatorname{det}(A-\lambda I)$ is a polynomial of λ of degree n :
$\operatorname{det}(A-\lambda I)=(-1)^{n} \lambda^{n}+c_{1} \lambda^{n-1}+\cdots+c_{n-1} \lambda+c_{n}$.
Corollary Any n-by- n matrix has at most n eigenvalues.

Theorem If $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$ are eigenvectors of a linear operator L associated with distinct eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$, then $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$ are linearly independent.

Corollary Suppose A is an n-by- n matrix that has n distinct eigenvalues. Then \mathbb{R}^{n} has a basis consisting of eigenvectors of A.

Example. $\quad A=\left(\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right)$.

- The matrix A has two eigenvalues: 1 and 3 .
- The eigenspace of A associated with the eigenvalue 1 is the line $t(-1,1)$.
- The eigenspace of A associated with the eigenvalue 3 is the line $t(1,1)$.
- Eigenvectors $\mathbf{v}_{1}=(-1,1)$ and $\mathbf{v}_{2}=(1,1)$ of the matrix A form a basis for \mathbb{R}^{2}.
- Matrix of the operator $L: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, L(\mathbf{x})=A \mathbf{x}$ with respect to the basis $\mathbf{v}_{1}, \mathbf{v}_{2}$ is $\left(\begin{array}{ll}1 & 0 \\ 0 & 3\end{array}\right)$.

Example. $\quad A=\left(\begin{array}{rrr}1 & 1 & -1 \\ 1 & 1 & 1 \\ 0 & 0 & 2\end{array}\right)$.

- The matrix A has two eigenvalues: 0 and 2 .
- The eigenspace of A associated with the eigenvalue 0 is the line $t(-1,1,0)$.
- The eigenspace of A associated with the eigenvalue 2 is the plane $t(1,1,0)+s(-1,0,1)$.
- Eigenvectors $\mathbf{u}_{1}=(-1,1,0), \mathbf{u}_{2}=(1,1,0)$, and $\mathbf{u}_{3}=(-1,0,1)$ of the matrix A form a basis for \mathbb{R}^{3}.
- Matrix of the operator $L: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}, L(\mathbf{x})=A \mathbf{x}$
with respect to the basis $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}$ is $\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2\end{array}\right)$.

There are two obstructions to diagonalization of a matrix (i.e., existence of a basis of eigenvectors). They are illustrated by the following examples.
Example 1. $\quad A=\left(\begin{array}{rr}0 & -1 \\ 1 & 0\end{array}\right)$. $\operatorname{det}(A-\lambda I)=\lambda^{2}+1$.
\Longrightarrow no real eigenvalues or eigenvectors
(However there are complex eigenvalues/eigenvectors.)
Example 2. $\quad A=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$.
$\operatorname{det}(A-\lambda I)=(\lambda-1)^{2}$. Hence $\lambda=1$ is the only eigenvalue. The associated eigenspace is the line $t(1,0)$.

Change of coordinates

Given a vector $\mathbf{v} \in \mathbb{R}^{2}$, let (x, y) be its standard coordinates, i.e., coordinates with respect to the standard basis $\mathbf{e}_{1}=(1,0), \mathbf{e}_{2}=(0,1)$, and let (x^{\prime}, y^{\prime}) be its coordinates with respect to the basis $\mathbf{v}_{1}=(3,1), \quad \mathbf{v}_{2}=(2,1)$.

Problem. Find a relation between (x, y) and $\left(x^{\prime}, y^{\prime}\right)$. By definition, $\mathbf{v}=x \mathbf{e}_{1}+y \mathbf{e}_{2}=x^{\prime} \mathbf{v}_{1}+y^{\prime} \mathbf{v}_{2}$. In standard coordinates,

$$
\begin{aligned}
\binom{x}{y} & =x^{\prime}\binom{3}{1}+y^{\prime}\binom{2}{1}=\left(\begin{array}{ll}
3 & 2 \\
1 & 1
\end{array}\right)\binom{x^{\prime}}{y^{\prime}} \\
\Longrightarrow\binom{x^{\prime}}{y^{\prime}} & =\left(\begin{array}{ll}
3 & 2 \\
1 & 1
\end{array}\right)^{-1}\binom{x}{y}=\left(\begin{array}{rr}
1 & -2 \\
-1 & 3
\end{array}\right)\binom{x}{y}
\end{aligned}
$$

Change of coordinates

Let V be a vector space.
Let $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$ be a basis for V and $g_{1}: V \rightarrow \mathbb{R}^{n}$ be the coordinate mapping corresponding to this basis.

Let $\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{n}$ be another basis for V and $g_{2}: V \rightarrow \mathbb{R}^{n}$ be the coordinate mapping corresponding to this basis.

The composition $g_{2} \circ g_{1}^{-1}$ is a linear mapping of \mathbb{R}^{n} to itself. It is represented as $\mathbf{x} \mapsto U \mathbf{x}$, where U is an $n \times n$ matrix.
U is called the transition matrix from $\mathbf{v}_{1}, \mathbf{v}_{2} \ldots, \mathbf{v}_{n}$ to $\mathbf{u}_{1}, \mathbf{u}_{2} \ldots, \mathbf{u}_{n}$. Columns of U are coordinates of the vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$ with respect to the basis $\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{n}$.

Problem. Find the transition matrix from the standard basis $\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}$ in \mathbb{R}^{3} to the basis
$\mathbf{u}_{1}=(-1,1,0), \mathbf{u}_{2}=(1,1,0), \mathbf{u}_{3}=(-1,0,1)$.
The transition matrix from $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}$ to $\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}$ is

$$
U=\left(\begin{array}{r|r|r}
-1 & 1 & -1 \\
1 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

The transition matrix from $\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}$ to $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}$ is the inverse matrix U^{-1}.
The inverse matrix can be computed using row reduction.

Change of basis for a linear operator

Let $L: V \rightarrow V$ be a linear operator on a vector space V.
Let A be the matrix of L relative to a basis $\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{n}$ for V. Let B be the matrix of L relative to another basis $\mathbf{b}_{1}, \mathbf{b}_{2}, \ldots, \mathbf{b}_{n}$ for V.

Let U be the transition matrix from the basis $\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{n}$ to $\mathbf{b}_{1}, \mathbf{b}_{2}, \ldots, \mathbf{b}_{n}$.

It follows that $U A=B U$.
Then $A=U^{-1} B U$ and $B=U A U^{-1}$.

Problem. Consider a linear operator $L: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$,

$$
L\binom{x}{y}=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)\binom{x}{y}
$$

Find the matrix of L with respect to the basis
$\mathbf{v}_{1}=(3,1), \mathbf{v}_{2}=(2,1)$.
Let S be the matrix of L with respect to the standard basis, N be the matrix of L w.r.t. the basis $\mathbf{v}_{1}, \mathbf{v}_{2}$, and U be the transition matrix from $\mathbf{v}_{1}, \mathbf{v}_{2}$ to $\mathbf{e}_{1}, \mathbf{e}_{2}$. Then $N=U^{-1} S U$.

$$
\begin{gathered}
S=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right), \quad U=\left(\begin{array}{ll}
3 & 2 \\
1 & 1
\end{array}\right), \\
N=U^{-1} S U=\left(\begin{array}{rr}
1 & -2 \\
-1 & 3
\end{array}\right)\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
3 & 2 \\
1 & 1
\end{array}\right) \\
=\left(\begin{array}{rr}
1 & -1 \\
-1 & 2
\end{array}\right)\left(\begin{array}{ll}
3 & 2 \\
1 & 1
\end{array}\right)=\left(\begin{array}{rr}
2 & 1 \\
-1 & 0
\end{array}\right) .
\end{gathered}
$$

Problem. Let $A=\left(\begin{array}{rrr}1 & 1 & -1 \\ 1 & 1 & 1 \\ 0 & 0 & 2\end{array}\right)$. Find A^{16}.
We already know that vectors $\mathbf{u}_{1}=(-1,1,0)$, $\mathbf{u}_{2}=(1,1,0)$, and $\mathbf{u}_{3}=(-1,0,1)$ are eigenvectors of the matrix $A: A \mathbf{u}_{1}=\mathbf{0}, A \mathbf{u}_{2}=2 \mathbf{u}_{2}, A \mathbf{u}_{3}=2 \mathbf{u}_{3}$. It follows that $A=U B U^{-1}$, where

$$
B=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right), \quad U=\left(\begin{array}{rrr}
-1 & 1 & -1 \\
1 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Indeed, B is the matrix of the operator $L: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$, $L(\mathbf{x})=A \mathbf{x}$ with respect to the basis $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}$ while U is the transition matrix from $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}$ to the standard basis.

The equality $A=U B U^{-1}$ implies that $A^{2}=A A=U B U^{-1} U B U^{-1}=U B^{2} U^{-1}$, $A^{3}=A^{2} A=U B^{2} U^{-1} U B U^{-1}=U B^{3} U^{-1}$, and so on.
Thus $A^{n}=U B^{n} U^{-1}$ for $n=1,2,3, \ldots$
In particular, $A^{16}=U B^{16} U^{-1}$.

$$
B^{16}=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right)^{16}=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 2^{16} & 0 \\
0 & 0 & 2^{16}
\end{array}\right)=2^{15} B
$$

Hence $A^{16}=U\left(2^{15} B\right) U^{-1}=2{ }^{15} U B U^{-1}=2^{15} A$.

$$
A^{16}=32768 A=\left(\begin{array}{ccc}
32768 & 32768 & -32768 \\
32768 & 32768 & 32768 \\
0 & 0 & 65536
\end{array}\right)
$$

