# MATH 311-504 Topics in Applied Mathematics Lecture 2-12: Bases of eigenvectors (continued). Change of coordinates.

### Diagonalization

Let  $L: V \rightarrow V$  be a linear operator.

Let  $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$  be a basis for V and A be the matrix of the operator L with respect to this basis.

**Theorem** The matrix A is diagonal if and only if vectors  $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n$  are eigenvectors of L. If this is the case, then the diagonal entries of the matrix A are the corresponding eigenvalues of L.

$$L(\mathbf{v}_i) = \lambda_i \mathbf{v}_i \iff A = \begin{pmatrix} \lambda_1 & & O \\ & \lambda_2 & \\ & & \ddots & \\ O & & & \lambda_n \end{pmatrix}$$

### Eigenvalues and eigenvectors of a matrix

Eigenvalues  $\lambda$  of a square matrix A are roots of the characteristic equation  $det(A - \lambda I) = 0$ .

Associated eigenvectors of A are nonzero solutions of the equation  $(A - \lambda I)\mathbf{x} = \mathbf{0}$ .

**Theorem** Let A be an *n*-by-*n* matrix. Then det $(A - \lambda I)$  is a polynomial of  $\lambda$  of degree *n*: det $(A - \lambda I) = (-1)^n \lambda^n + c_1 \lambda^{n-1} + \dots + c_{n-1} \lambda + c_n$ .

**Corollary** Any *n*-by-*n* matrix has at most *n* eigenvalues.

**Theorem** If  $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$  are eigenvectors of a linear operator L associated with distinct eigenvalues  $\lambda_1, \lambda_2, \dots, \lambda_n$ , then  $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$  are linearly independent.

**Corollary** Suppose A is an *n*-by-*n* matrix that has n distinct eigenvalues. Then  $\mathbb{R}^n$  has a basis consisting of eigenvectors of A.

Example. 
$$A = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$$
.

- The matrix A has two eigenvalues: 1 and 3.
- The eigenspace of A associated with the eigenvalue 1 is the line t(-1, 1).

• The eigenspace of A associated with the eigenvalue 3 is the line t(1, 1).

• Eigenvectors  $\mathbf{v}_1 = (-1, 1)$  and  $\mathbf{v}_2 = (1, 1)$  of the matrix A form a basis for  $\mathbb{R}^2$ .

• Matrix of the operator  $L : \mathbb{R}^2 \to \mathbb{R}^2$ ,  $L(\mathbf{x}) = A\mathbf{x}$ with respect to the basis  $\mathbf{v}_1, \mathbf{v}_2$  is  $\begin{pmatrix} 1 & 0 \\ 0 & 3 \end{pmatrix}$ .

Example. 
$$A = \begin{pmatrix} 1 & 1 & -1 \\ 1 & 1 & 1 \\ 0 & 0 & 2 \end{pmatrix}$$
.

• The matrix A has two eigenvalues: 0 and 2.

• The eigenspace of A associated with the eigenvalue 0 is the line t(-1, 1, 0).

• The eigenspace of A associated with the eigenvalue 2 is the plane t(1, 1, 0) + s(-1, 0, 1).

- Eigenvectors  $\mathbf{u}_1 = (-1, 1, 0)$ ,  $\mathbf{u}_2 = (1, 1, 0)$ , and  $\mathbf{u}_3 = (-1, 0, 1)$  of the matrix A form a basis for  $\mathbb{R}^3$ .
- Matrix of the operator  $L : \mathbb{R}^3 \to \mathbb{R}^3$ ,  $L(\mathbf{x}) = A\mathbf{x}$ with respect to the basis  $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3$  is  $\begin{pmatrix} 0 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}$ .

There are **two obstructions** to diagonalization of a matrix (i.e., existence of a basis of eigenvectors). They are illustrated by the following examples.

/

Example 1. 
$$A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$
.  
 $det(A - \lambda I) = \lambda^2 + 1$ .  
 $\implies$  no real eigenvalues or eigenvectors  
However there are *complex* eigenvalues/eigenvectors.)  
*Example 2.*  $A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ .  
 $det(A - \lambda I) = (\lambda - 1)^2$ . Hence  $\lambda = 1$  is the only  
eigenvalue. The associated eigenspace is the line  
 $t(1, 0)$ .

## Change of coordinates

Given a vector  $\mathbf{v} \in \mathbb{R}^2$ , let (x, y) be its standard coordinates, i.e., coordinates with respect to the standard basis  $\mathbf{e}_1 = (1, 0)$ ,  $\mathbf{e}_2 = (0, 1)$ , and let (x', y') be its coordinates with respect to the basis  $\mathbf{v}_1 = (3, 1)$ ,  $\mathbf{v}_2 = (2, 1)$ .

**Problem.** Find a relation between (x, y) and (x', y'). By definition,  $\mathbf{v} = x\mathbf{e}_1 + y\mathbf{e}_2 = x'\mathbf{v}_1 + y'\mathbf{v}_2$ . In standard coordinates,

$$\begin{pmatrix} x \\ y \end{pmatrix} = x' \begin{pmatrix} 3 \\ 1 \end{pmatrix} + y' \begin{pmatrix} 2 \\ 1 \end{pmatrix} = \begin{pmatrix} 3 & 2 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} x' \\ y' \end{pmatrix}$$
$$\implies \begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} 3 & 2 \\ 1 & 1 \end{pmatrix}^{-1} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 & -2 \\ -1 & 3 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

## **Change of coordinates**

Let V be a vector space.

Let  $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$  be a basis for V and  $g_1 : V \to \mathbb{R}^n$  be the coordinate mapping corresponding to this basis.

Let  $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n$  be another basis for V and  $g_2: V \to \mathbb{R}^n$  be the coordinate mapping corresponding to this basis.



The composition  $g_2 \circ g_1^{-1}$  is a linear mapping of  $\mathbb{R}^n$  to itself. It is represented as  $\mathbf{x} \mapsto U\mathbf{x}$ , where U is an  $n \times n$  matrix. U is called the **transition matrix** from  $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n$  to  $\mathbf{u}_1, \mathbf{u}_2, \ldots, \mathbf{u}_n$ . Columns of U are coordinates of the vectors  $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n$  with respect to the basis  $\mathbf{u}_1, \mathbf{u}_2, \ldots, \mathbf{u}_n$ . **Problem.** Find the transition matrix from the standard basis  $\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3$  in  $\mathbb{R}^3$  to the basis  $\mathbf{u}_1 = (-1, 1, 0), \ \mathbf{u}_2 = (1, 1, 0), \ \mathbf{u}_3 = (-1, 0, 1).$ 

The transition matrix from  $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3$  to  $\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3$  is

$$U = egin{pmatrix} -1 & 1 & -1 \ 1 & 1 & 0 \ 0 & 0 & 1 \end{pmatrix}.$$

The transition matrix from  $\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3$  to  $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3$  is the inverse matrix  $U^{-1}$ .

The inverse matrix can be computed using row reduction.

## Change of basis for a linear operator

Let  $L: V \to V$  be a linear operator on a vector space V.

Let A be the matrix of L relative to a basis  $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n$ for V. Let B be the matrix of L relative to another basis  $\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n$  for V.

Let U be the transition matrix from the basis  $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n$  to  $\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n$ .



It follows that UA = BU. Then  $A = U^{-1}BU$  and  $B = UAU^{-1}$ . **Problem.** Consider a linear operator  $L : \mathbb{R}^2 \to \mathbb{R}^2$ ,  $L \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}.$ 

Find the matrix of L with respect to the basis  $\mathbf{v}_1 = (3, 1)$ ,  $\mathbf{v}_2 = (2, 1)$ .

Let *S* be the matrix of *L* with respect to the standard basis, *N* be the matrix of *L* w.r.t. the basis  $\mathbf{v}_1, \mathbf{v}_2$ , and *U* be the transition matrix from  $\mathbf{v}_1, \mathbf{v}_2$  to  $\mathbf{e}_1, \mathbf{e}_2$ . Then  $N = U^{-1}SU$ .

$$S = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \quad U = \begin{pmatrix} 3 & 2 \\ 1 & 1 \end{pmatrix},$$
$$N = U^{-1}SU = \begin{pmatrix} 1 & -2 \\ -1 & 3 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 3 & 2 \\ 1 & 1 \end{pmatrix}$$
$$= \begin{pmatrix} 1 & -1 \\ -1 & 2 \end{pmatrix} \begin{pmatrix} 3 & 2 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 1 \\ -1 & 0 \end{pmatrix}.$$

**Problem.** Let 
$$A = \begin{pmatrix} 1 & 1 & -1 \\ 1 & 1 & 1 \\ 0 & 0 & 2 \end{pmatrix}$$
. Find  $A^{16}$ .

We already know that vectors  $\mathbf{u}_1 = (-1, 1, 0)$ ,  $\mathbf{u}_2 = (1, 1, 0)$ , and  $\mathbf{u}_3 = (-1, 0, 1)$  are eigenvectors of the matrix A:  $A\mathbf{u}_1 = \mathbf{0}$ ,  $A\mathbf{u}_2 = 2\mathbf{u}_2$ ,  $A\mathbf{u}_3 = 2\mathbf{u}_3$ . It follows that  $A = UBU^{-1}$ , where

$$B = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}, \quad U = \begin{pmatrix} -1 & 1 & -1 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Indeed, *B* is the matrix of the operator  $L : \mathbb{R}^3 \to \mathbb{R}^3$ ,  $L(\mathbf{x}) = A\mathbf{x}$  with respect to the basis  $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3$  while *U* is the transition matrix from  $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3$  to the standard basis.

The equality 
$$A = UBU^{-1}$$
 implies that  
 $A^2 = AA = UBU^{-1}UBU^{-1} = UB^2U^{-1}$ ,  
 $A^3 = A^2A = UB^2U^{-1}UBU^{-1} = UB^3U^{-1}$ , and so on.  
Thus  $A^n = UB^nU^{-1}$  for  $n = 1, 2, 3, ...$   
In particular,  $A^{16} = UB^{16}U^{-1}$ .

$$B^{16} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}^{16} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 2^{16} & 0 \\ 0 & 0 & 2^{16} \end{pmatrix} = 2^{15}B.$$

Hence  $A^{16} = U(2^{15}B)U^{-1} = 2^{15}UBU^{-1} = 2^{15}A.$ 

$$A^{16} = 32768 A = \begin{pmatrix} 32768 & 32768 & -32768 \\ 32768 & 32768 & 32768 \\ 0 & 0 & 65536 \end{pmatrix}$$

.