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Lecture 2-12:
Bases of eigenvectors (continued).

Change of coordinates.



Diagonalization

Let L : V → V be a linear operator.

Let v1, v2, . . . , vn be a basis for V and A be the
matrix of the operator L with respect to this basis.

Theorem The matrix A is diagonal if and only if
vectors v1, v2, . . . , vn are eigenvectors of L.

If this is the case, then the diagonal entries of the
matrix A are the corresponding eigenvalues of L.

L(vi) = λivi ⇐⇒ A =









λ1 O

λ2

. . .
O λn











Eigenvalues and eigenvectors of a matrix

Eigenvalues λ of a square matrix A are roots of the
characteristic equation det(A − λI ) = 0.

Associated eigenvectors of A are nonzero solutions
of the equation (A − λI )x = 0.

Theorem Let A be an n-by-n matrix. Then
det(A − λI ) is a polynomial of λ of degree n:

det(A − λI ) = (−1)nλn + c1λ
n−1 + · · · + cn−1λ + cn.

Corollary Any n-by-n matrix has at most n

eigenvalues.



Theorem If v1, v2, . . . , vn are eigenvectors of a
linear operator L associated with distinct
eigenvalues λ1, λ2, . . . , λn, then v1, v2, . . . , vn are
linearly independent.

Corollary Suppose A is an n-by-n matrix that has
n distinct eigenvalues. Then R

n has a basis
consisting of eigenvectors of A.



Example. A =

(

2 1
1 2

)

.

• The matrix A has two eigenvalues: 1 and 3.

• The eigenspace of A associated with the
eigenvalue 1 is the line t(−1, 1).

• The eigenspace of A associated with the
eigenvalue 3 is the line t(1, 1).

• Eigenvectors v1 = (−1, 1) and v2 = (1, 1) of
the matrix A form a basis for R

2.

• Matrix of the operator L : R
2 → R

2, L(x) = Ax

with respect to the basis v1, v2 is

(

1 0
0 3

)

.



Example. A =





1 1 −1
1 1 1
0 0 2



.

• The matrix A has two eigenvalues: 0 and 2.

• The eigenspace of A associated with the
eigenvalue 0 is the line t(−1, 1, 0).

• The eigenspace of A associated with the
eigenvalue 2 is the plane t(1, 1, 0) + s(−1, 0, 1).

• Eigenvectors u1 = (−1, 1, 0), u2 = (1, 1, 0), and
u3 = (−1, 0, 1) of the matrix A form a basis for R

3.

• Matrix of the operator L : R
3 → R

3, L(x) = Ax

with respect to the basis u1,u2,u3 is





0 0 0

0 2 0

0 0 2



.



There are two obstructions to diagonalization of a
matrix (i.e., existence of a basis of eigenvectors).
They are illustrated by the following examples.

Example 1. A =

(

0 −1
1 0

)

.

det(A − λI ) = λ2 + 1.
=⇒ no real eigenvalues or eigenvectors

(However there are complex eigenvalues/eigenvectors.)

Example 2. A =

(

1 1
0 1

)

.

det(A − λI ) = (λ − 1)2. Hence λ = 1 is the only
eigenvalue. The associated eigenspace is the line
t(1, 0).



Change of coordinates

Given a vector v ∈ R
2, let (x , y) be its standard

coordinates, i.e., coordinates with respect to the
standard basis e1 = (1, 0), e2 = (0, 1), and let
(x ′, y ′) be its coordinates with respect to the basis
v1 = (3, 1), v2 = (2, 1).

Problem. Find a relation between (x , y) and (x ′, y ′).

By definition, v = xe1 + ye2 = x ′v1 + y ′v2.
In standard coordinates,

(

x

y

)

= x ′

(

3
1

)

+ y ′

(

2
1

)

=

(

3 2
1 1

) (

x ′

y ′

)

=⇒

(

x ′

y ′

)

=

(

3 2
1 1

)

−1 (

x

y

)

=

(

1 −2
−1 3

) (

x

y

)



Change of coordinates

Let V be a vector space.
Let v1, v2, . . . , vn be a basis for V and g1 : V → R

n be the
coordinate mapping corresponding to this basis.

Let u1,u2, . . . ,un be another basis for V and g2 : V → R
n

be the coordinate mapping corresponding to this basis.

V
g1

ւ
g2

ց

R
n −→ R

n

The composition g2◦g
−1

1
is a linear mapping of R

n to itself.
It is represented as x 7→ Ux, where U is an n×n matrix.

U is called the transition matrix from v1, v2 . . . , vn to
u1,u2 . . . ,un. Columns of U are coordinates of the vectors
v1, v2, . . . , vn with respect to the basis u1,u2, . . . ,un.



Problem. Find the transition matrix from the
standard basis e1, e2, e3 in R

3 to the basis
u1 = (−1, 1, 0), u2 = (1, 1, 0), u3 = (−1, 0, 1).

The transition matrix from u1,u2,u3 to e1, e2, e3 is

U =





−1 1 −1
1 1 0
0 0 1



.

The transition matrix from e1, e2, e3 to u1,u2,u3 is
the inverse matrix U−1.

The inverse matrix can be computed using row
reduction.



Change of basis for a linear operator

Let L : V → V be a linear operator on a vector space V .

Let A be the matrix of L relative to a basis a1, a2, . . . , an

for V . Let B be the matrix of L relative to another basis
b1,b2, . . . ,bn for V .

Let U be the transition matrix from the basis a1, a2, . . . , an

to b1,b2, . . . ,bn.

a-coordinates of v
A

−→ a-coordinates of L(v)

U




y





y
U

b-coordinates of v
B

−→ b-coordinates of L(v)

It follows that UA = BU .

Then A = U−1BU and B = UAU−1.



Problem. Consider a linear operator L : R
2 → R

2,

L

(

x

y

)

=

(

1 1
0 1

) (

x

y

)

.

Find the matrix of L with respect to the basis
v1 = (3, 1), v2 = (2, 1).

Let S be the matrix of L with respect to the standard basis,
N be the matrix of L w.r.t. the basis v1, v2, and U be the
transition matrix from v1, v2 to e1, e2. Then N = U−1SU .

S =

(

1 1
0 1

)

, U =

(

3 2
1 1

)

,

N = U−1SU =

(

1 −2
−1 3

) (

1 1
0 1

) (

3 2
1 1

)

=

(

1 −1
−1 2

) (

3 2
1 1

)

=

(

2 1
−1 0

)

.



Problem. Let A =





1 1 −1
1 1 1
0 0 2



. Find A16.

We already know that vectors u1 = (−1, 1, 0),
u2 = (1, 1, 0), and u3 = (−1, 0, 1) are eigenvectors
of the matrix A: Au1 = 0, Au2 = 2u2, Au3 = 2u3.
It follows that A = UBU−1, where

B =





0 0 0
0 2 0
0 0 2



, U =





−1 1 −1
1 1 0
0 0 1



.

Indeed, B is the matrix of the operator L : R
3 → R

3,
L(x) = Ax with respect to the basis u1,u2,u3 while U is the
transition matrix from u1,u2,u3 to the standard basis.



The equality A = UBU−1 implies that
A2 = AA = UBU−1UBU−1 = UB2U−1,
A3 = A2A = UB2U−1UBU−1 = UB3U−1, and so on.
Thus An = UBnU−1 for n = 1, 2, 3, . . .
In particular, A16 = UB16U−1.

B16 =





0 0 0
0 2 0
0 0 2





16

=





0 0 0
0 216 0
0 0 216



 = 215B .

Hence A16 = U(215B)U−1 = 215UBU−1 = 215A.

A16 = 32768 A =





32768 32768 −32768
32768 32768 32768

0 0 65536



.


