MATH 311-504
 Topics in Applied Mathematics

Lecture 2-13:
Review for Test 2.

Topics for Test 2

Vector spaces and linear transformations (Williamson/Trotter 3.1-3.4)

- Vector spaces. Subspaces.
- Linear mappings. Matrix transformations.
- Span. Image and null-space.
- Linear independence (especially in functional spaces).

Basis, dimension, coordinates (Williamson/Trotter 3.5, 3.6C)

- Basis of a vector space. Dimension.
- Matrix of a linear transformation.
- Change of coordinates.

Eigenvalues and eigenvectors (Williamson/Trotter 3.6)

- Eigenvalues, eigenvectors, eigenspaces.
- Characteristic equation of a matrix.
- Bases of eigenvectors, diagonalization.

Sample problems for Test 2

Problem 1 (20 pts.) Determine which of the following subsets of \mathbb{R}^{3} are subspaces. Briefly explain.
(i) The set S_{1} of vectors $(x, y, z) \in \mathbb{R}^{3}$ such that $x y z=0$.
(ii) The set S_{2} of vectors $(x, y, z) \in \mathbb{R}^{3}$ such that $x+y+z=0$.
(iii) The set S_{3} of vectors $(x, y, z) \in \mathbb{R}^{3}$ such that $y^{2}+z^{2}=0$.
(iv) The set S_{4} of vectors $(x, y, z) \in \mathbb{R}^{3}$ such that $y^{2}-z^{2}=0$.

Sample problems for Test 2

Problem 2 (20 pts.) Let $\mathcal{M}_{2,2}(\mathbb{R})$ denote the space of 2-by-2 matrices with real entries. Consider a linear operator $L: \mathcal{M}_{2,2}(\mathbb{R}) \rightarrow \mathcal{M}_{2,2}(\mathbb{R})$ given by

$$
L\left(\begin{array}{ll}
x & y \\
z & w
\end{array}\right)=\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)\left(\begin{array}{ll}
x & y \\
z & w
\end{array}\right)
$$

Find the matrix of the operator L with respect to the basis

$$
E_{1}=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right), E_{2}=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), E_{3}=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right), E_{4}=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right) .
$$

Sample problems for Test 2

Problem 3 (30 pts.) Consider a linear operator $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}, \quad f(\mathbf{x})=A \mathbf{x}$, where

$$
A=\left(\begin{array}{rrr}
1 & -1 & -2 \\
-2 & 1 & 3 \\
-1 & 0 & 1
\end{array}\right)
$$

(i) Find a basis for the image of f.
(ii) Find a basis for the null-space of f.

Sample problems for Test 2

Problem 4 (30 pts.) Let $B=\left(\begin{array}{lll}1 & 2 & 0 \\ 1 & 1 & 1 \\ 0 & 2 & 1\end{array}\right)$.
(i) Find all eigenvalues of the matrix B.
(ii) For each eigenvalue of B, find an associated eigenvector.
(iii) Is there a basis for \mathbb{R}^{3} consisting of eigenvectors of B ? Explain.
(iv) Find a diagonal matrix D and an invertible matrix U such that $B=U D U^{-1}$.
(v) Find all eigenvalues of the matrix B^{2}.

Sample problems for Test 2

Bonus Problem 5 (20 pts.) Solve the following system of differential equations (find all solutions):

$$
\left\{\begin{array}{l}
\frac{d x}{d t}=x+2 y \\
\frac{d y}{d t}=x+y+z \\
\frac{d z}{d t}=2 y+z
\end{array}\right.
$$

Problem 1. Determine which of the following subsets of \mathbb{R}^{3} are subspaces. Briefly explain.

A subset of \mathbb{R}^{3} is a subspace if it is closed under addition and scalar multiplication. Besides, the subset must not be empty.
(i) The set S_{1} of vectors $(x, y, z) \in \mathbb{R}^{3}$ such that $x y z=0$.
$(0,0,0) \in S_{1} \Longrightarrow S_{1}$ is not empty.
$x y z=0 \Longrightarrow(r x)(r y)(r z)=r^{3} x y z=0$.
That is, $\mathbf{v}=(x, y, z) \in S_{1} \Longrightarrow r \mathbf{v}=(r x, r y, r z) \in S_{1}$. Hence S_{1} is closed under scalar multiplication.
However S_{1} is not closed under addition.
Counterexample: $(1,1,0)+(0,0,1)=(1,1,1)$.

Problem 1. Determine which of the following subsets of \mathbb{R}^{3} are subspaces. Briefly explain.

A subset of \mathbb{R}^{3} is a subspace if it is closed under addition and scalar multiplication. Besides, the subset must not be empty.
(ii) The set S_{2} of vectors $(x, y, z) \in \mathbb{R}^{3}$ such that $x+y+z=0$.
$(0,0,0) \in S_{2} \Longrightarrow S_{2}$ is not empty.
$x+y+z=0 \Longrightarrow r x+r y+r z=r(x+y+z)=0$.
Hence S_{2} is closed under scalar multiplication.
$x+y+z=x^{\prime}+y^{\prime}+z^{\prime}=0 \Longrightarrow$
$\left(x+x^{\prime}\right)+\left(y+y^{\prime}\right)+\left(z+z^{\prime}\right)=(x+y+z)+\left(x^{\prime}+y^{\prime}+z^{\prime}\right)=0$.
That is, $\mathbf{v}=(x, y, z), \mathbf{v}^{\prime}=(x, y, z) \in S_{2}$

$$
\Longrightarrow \mathbf{v}+\mathbf{v}^{\prime}=\left(x+x^{\prime}, y+y^{\prime}, z+z^{\prime}\right) \in S_{2} .
$$

Hence S_{2} is closed under addition.
(iii) The set S_{3} of vectors $(x, y, z) \in \mathbb{R}^{3}$ such that $y^{2}+z^{2}=0$.
$y^{2}+z^{2}=0 \Longleftrightarrow y=z=0$.
S_{3} is a nonempty set closed under addition and scalar multiplication.
(iv) The set S_{4} of vectors $(x, y, z) \in \mathbb{R}^{3}$ such that $y^{2}-z^{2}=0$.
S_{4} is a nonempty set closed under scalar multiplication. However S_{4} is not closed under addition.
Counterexample: $(0,1,1)+(0,1,-1)=(0,2,0)$.

Problem 2. Let $\mathcal{M}_{2,2}(\mathbb{R})$ denote the vector space of 2×2 matrices with real entries. Consider a linear operator $L: \mathcal{M}_{2,2}(\mathbb{R}) \rightarrow \mathcal{M}_{2,2}(\mathbb{R})$ given by

$$
L\left(\begin{array}{ll}
x & y \\
z & w
\end{array}\right)=\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)\left(\begin{array}{ll}
x & y \\
z & w
\end{array}\right) .
$$

Find the matrix of the operator L with respect to the basis
$E_{1}=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right), E_{2}=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right), E_{3}=\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right), E_{4}=\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)$.
Let M_{L} denote the desired matrix.
By definition, M_{L} is a 4×4 matrix whose columns are coordinates of the matrices $L\left(E_{1}\right), L\left(E_{2}\right), L\left(E_{3}\right), L\left(E_{4}\right)$ with respect to the basis $E_{1}, E_{2}, E_{3}, E_{4}$.

$$
\begin{aligned}
& L\left(E_{1}\right)=\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
3 & 0
\end{array}\right)=1 E_{1}+0 E_{2}+3 E_{3}+0 E_{4}, \\
& L\left(E_{2}\right)=\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)=\left(\begin{array}{ll}
0 & 1 \\
0 & 3
\end{array}\right)=0 E_{1}+1 E_{2}+0 E_{3}+3 E_{4}, \\
& L\left(E_{3}\right)=\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)=\left(\begin{array}{ll}
2 & 0 \\
4 & 0
\end{array}\right)=2 E_{1}+0 E_{2}+4 E_{3}+0 E_{4}, \\
& L\left(E_{4}\right)=\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)=\left(\begin{array}{ll}
0 & 2 \\
0 & 4
\end{array}\right)=0 E_{1}+2 E_{2}+0 E_{3}+4 E_{4} .
\end{aligned}
$$

It follows that

$$
M_{L}=\left(\begin{array}{llll}
1 & 0 & 2 & 0 \\
0 & 1 & 0 & 2 \\
3 & 0 & 4 & 0 \\
0 & 3 & 0 & 4
\end{array}\right)
$$

Thus the relation

$$
\left(\begin{array}{ll}
x_{1} & y_{1} \\
z_{1} & w_{1}
\end{array}\right)=\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)\left(\begin{array}{ll}
x & y \\
z & w
\end{array}\right)
$$

is equivalent to the relation

$$
\left(\begin{array}{l}
x_{1} \\
y_{1} \\
z_{1} \\
w_{1}
\end{array}\right)=\left(\begin{array}{llll}
1 & 0 & 2 & 0 \\
0 & 1 & 0 & 2 \\
3 & 0 & 4 & 0 \\
0 & 3 & 0 & 4
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z \\
w
\end{array}\right) .
$$

Problem 3. Consider a linear operator $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$,
$f(\mathbf{x})=A \mathbf{x}$, where $A=\left(\begin{array}{rrr}1 & -1 & -2 \\ -2 & 1 & 3 \\ -1 & 0 & 1\end{array}\right)$.
(i) Find a basis for the image of f.

The image of f is spanned by columns of the matrix A :
$\mathbf{v}_{1}=(1,-2,-1), \mathbf{v}_{2}=(-1,1,0), \mathbf{v}_{3}=(-2,3,1)$.
$\operatorname{det} A=\left|\begin{array}{rrr}1 & -1 & -2 \\ -2 & 1 & 3 \\ -1 & 0 & 1\end{array}\right|=-1\left|\begin{array}{rr}-1 & -2 \\ 1 & 3\end{array}\right|+1\left|\begin{array}{rr}1 & -1 \\ -2 & 1\end{array}\right|=0$.
Hence $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ are linearly dependent.
It is easy to observe that $\mathbf{v}_{2}=\mathbf{v}_{1}+\mathbf{v}_{3}$.
It follows that $\operatorname{Span}\left(\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right)=\operatorname{Span}\left(\mathbf{v}_{1}, \mathbf{v}_{3}\right)$.
Since the vectors \mathbf{v}_{1} and \mathbf{v}_{3} are linearly independent, they form a basis for the image of f.

Problem 3. Consider a linear operator $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$,
$f(\mathbf{x})=A \mathbf{x}$, where $A=\left(\begin{array}{rrr}1 & -1 & -2 \\ -2 & 1 & 3 \\ -1 & 0 & 1\end{array}\right)$.
(ii) Find a basis for the null-space of f.

The null-space of f is the set of solutions of the vector equation $A \mathbf{x}=\mathbf{0}$. To solve the equation, we convert the matrix A to reduced row echelon form:
$\left(\begin{array}{rrr}1 & -1 & -2 \\ -2 & 1 & 3 \\ -1 & 0 & 1\end{array}\right) \rightarrow\left(\begin{array}{rrr}1 & -1 & -2 \\ 0 & -1 & -1 \\ 0 & -1 & -1\end{array}\right) \rightarrow\left(\begin{array}{rrr}1 & -1 & -2 \\ 0 & -1 & -1 \\ 0 & 0 & 0\end{array}\right)$
$\rightarrow\left(\begin{array}{rrr}1 & -1 & -2 \\ 0 & 1 & 1 \\ 0 & 0 & 0\end{array}\right) \rightarrow\left(\begin{array}{rrr}1 & 0 & -1 \\ 0 & 1 & 1 \\ 0 & 0 & 0\end{array}\right) \rightarrow\left\{\begin{array}{l}x-z=0, \\ y+z=0 .\end{array}\right.$
General solution: $(x, y, z)=(t,-t, t)=t(1,-1,1), t \in \mathbb{R}$. Hence the null-space is a line and $(1,-1,1)$ is its basis.

Problem 4. Let $B=\left(\begin{array}{lll}1 & 2 & 0 \\ 1 & 1 & 1 \\ 0 & 2 & 1\end{array}\right)$.
(i) Find all eigenvalues of the matrix B.

The eigenvalues of B are roots of the characteristic equation $\operatorname{det}(B-\lambda I)=0$. We obtain that

$$
\begin{gathered}
\operatorname{det}(B-\lambda I)=\left|\begin{array}{ccc}
1-\lambda & 2 & 0 \\
1 & 1-\lambda & 1 \\
0 & 2 & 1-\lambda
\end{array}\right| \\
=(1-\lambda)^{3}-2(1-\lambda)-2(1-\lambda)=(1-\lambda)\left((1-\lambda)^{2}-4\right) \\
=(1-\lambda)((1-\lambda)-2)((1-\lambda)+2)=-(\lambda-1)(\lambda+1)(\lambda-3) .
\end{gathered}
$$

Hence the matrix B has three eigenvalues: $-1,1$, and 3 .

Problem 4. Let $B=\left(\begin{array}{lll}1 & 2 & 0 \\ 1 & 1 & 1 \\ 0 & 2 & 1\end{array}\right)$.
(ii) For each eigenvalue of B, find an associated eigenvector.

An eigenvector $\mathbf{v}=(x, y, z)$ of the matrix B associated with an eigenvalue λ is a nonzero solution of the vector equation
$(B-\lambda /) \mathbf{v}=\mathbf{0} \Longleftrightarrow\left(\begin{array}{ccc}1-\lambda & 2 & 0 \\ 1 & 1-\lambda & 1 \\ 0 & 2 & 1-\lambda\end{array}\right)\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)$.
To solve the equation, we convert the matrix $B-\lambda I$ to reduced row echelon form.

First consider the case $\lambda=-1$. The row reduction yields

$$
\begin{aligned}
& B+I=\left(\begin{array}{lll}
2 & 2 & 0 \\
1 & 2 & 1 \\
0 & 2 & 2
\end{array}\right) \rightarrow\left(\begin{array}{lll}
1 & 1 & 0 \\
1 & 2 & 1 \\
0 & 2 & 2
\end{array}\right) \\
& \rightarrow\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
0 & 2 & 2
\end{array}\right) \rightarrow\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right) \rightarrow\left(\begin{array}{rrr}
1 & 0 & -1 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right) .
\end{aligned}
$$

Hence

$$
(B+I) \mathbf{v}=\mathbf{0} \Longleftrightarrow\left\{\begin{array}{l}
x-z=0 \\
y+z=0
\end{array}\right.
$$

The general solution is $x=t, y=-t, z=t$, where $t \in \mathbb{R}$. In particular, $\mathbf{v}_{1}=(1,-1,1)$ is an eigenvector of B associated with the eigenvalue -1 .

Secondly, consider the case $\lambda=1$. The row reduction yields

$$
B-I=\left(\begin{array}{lll}
0 & 2 & 0 \\
1 & 0 & 1 \\
0 & 2 & 0
\end{array}\right) \rightarrow\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 2 & 0 \\
0 & 2 & 0
\end{array}\right) \rightarrow\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 2 & 0
\end{array}\right) \rightarrow\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right) .
$$

Hence

$$
(B-I) \mathbf{v}=\mathbf{0} \quad \Longleftrightarrow \quad\left\{\begin{array}{l}
x+z=0 \\
y=0
\end{array}\right.
$$

The general solution is $x=-t, y=0, z=t$, where $t \in \mathbb{R}$. In particular, $\mathbf{v}_{2}=(-1,0,1)$ is an eigenvector of B associated with the eigenvalue 1 .

Finally, consider the case $\lambda=3$. The row reduction yields

$$
\begin{aligned}
B-3 \left\lvert\,=\left(\begin{array}{rrr}
-2 & 2 & 0 \\
1 & -2 & 1 \\
0 & 2 & -2
\end{array}\right) \rightarrow\left(\begin{array}{rrr}
1 & -1 & 0 \\
1 & -2 & 1 \\
0 & 2 & -2
\end{array}\right) \rightarrow\left(\begin{array}{rrr}
1 & -1 & 0 \\
0 & -1 & 1 \\
0 & 2 & -2
\end{array}\right)\right. \\
\rightarrow\left(\begin{array}{rrr}
1 & -1 & 0 \\
0 & 1 & -1 \\
0 & 2 & -2
\end{array}\right) \rightarrow\left(\begin{array}{rrr}
1 & -1 & 0 \\
0 & 1 & -1 \\
0 & 0 & 0
\end{array}\right) \rightarrow\left(\begin{array}{rrr}
1 & 0 & -1 \\
0 & 1 & -1 \\
0 & 0 & 0
\end{array}\right) .
\end{aligned}
$$

Hence

$$
(B-3 /) \mathbf{v}=\mathbf{0} \Longleftrightarrow\left\{\begin{array}{l}
x-z=0 \\
y-z=0
\end{array}\right.
$$

The general solution is $x=t, y=t, z=t$, where $t \in \mathbb{R}$. In particular, $\mathbf{v}_{3}=(1,1,1)$ is an eigenvector of B associated with the eigenvalue 3 .

Problem 4. Let $B=\left(\begin{array}{lll}1 & 2 & 0 \\ 1 & 1 & 1 \\ 0 & 2 & 1\end{array}\right)$.
(iii) Is there a basis for \mathbb{R}^{3} consisting of eigenvectors of B ? Explain.

The vectors $\mathbf{v}_{1}=(1,-1,1), \mathbf{v}_{2}=(-1,0,1)$, and $\mathbf{v}_{3}=(1,1,1)$ are eigenvectors of the matrix B belonging to distinct eigenvalues. Therefore these vectors are linearly independent. It follows that $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ is a basis for \mathbb{R}^{3}.
Alternatively, the existence of a basis for \mathbb{R}^{3} consisting of eigenvectors of B already follows from the fact that the matrix B has three distinct eigenvalues.

Problem 4. Let $B=\left(\begin{array}{lll}1 & 2 & 0 \\ 1 & 1 & 1 \\ 0 & 2 & 1\end{array}\right)$.
(iv) Find a diagonal matrix D and an invertible matrix U such that $B=U D U^{-1}$.

Basis of eigenvectors: $\mathbf{v}_{1}=(1,-1,1), \mathbf{v}_{2}=(-1,0,1)$, $\mathbf{v}_{3}=(1,1,1)$. We have that $B=U D U^{-1}$, where

$$
D=\left(\begin{array}{rrr}
-1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 3
\end{array}\right), \quad U=\left(\begin{array}{rrr}
1 & -1 & 1 \\
-1 & 0 & 1 \\
1 & 1 & 1
\end{array}\right) .
$$

Here D is the matrix of the linear operator $L: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$, $L(\mathbf{x})=B \mathbf{x}$ with respect to the basis $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ while U is the transition matrix from $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ to the standard basis.

Problem 4. Let $B=\left(\begin{array}{lll}1 & 2 & 0 \\ 1 & 1 & 1 \\ 0 & 2 & 1\end{array}\right)$.
(v) Find all eigenvalues of the matrix B^{2}.

Suppose that $B \mathbf{v}=\lambda \mathbf{v}$ for some $\mathbf{v} \in \mathbb{R}^{3}$ and $\lambda \in \mathbb{R}$. Then

$$
B^{2} \mathbf{v}=B(B \mathbf{v})=B(\lambda \mathbf{v})=\lambda(B \mathbf{v})=\lambda^{2} \mathbf{v}
$$

It follows that $(-1)^{2}=1^{2}=1$ and $3^{2}=9$ are eigenvalues of the matrix B^{2}. These are the only eigenvalues of B^{2}.

Indeed, assume that $B^{2} \mathbf{v}=\mu \mathbf{v}$, where $\mathbf{v} \neq \mathbf{0}$. We have $\mathbf{v}=r_{1} \mathbf{v}_{1}+r_{2} \mathbf{v}_{2}+r_{3} \mathbf{v}_{3}$ for some $r_{1}, r_{2}, r_{3} \in \mathbb{R}^{3}$. Then $B^{2} \mathbf{v}=r_{1}\left(B^{2} \mathbf{v}_{1}\right)+r_{2}\left(B^{2} \mathbf{v}_{2}\right)+r_{3}\left(B^{2} \mathbf{v}_{3}\right)=r_{1} \mathbf{v}_{1}+r_{2} \mathbf{v}_{2}+9 r_{3} \mathbf{v}_{3}$, $\mu \mathbf{v}=\mu r_{1} \mathbf{v}_{1}+\mu r_{2} \mathbf{v}_{2}+\mu r_{3} \mathbf{v}_{3}$.
$\Longrightarrow r_{1}=\mu r_{1}, r_{2}=\mu r_{2}, 9 r_{3}=\mu r_{3}$
$\Longrightarrow(\mu-1) r_{1}=(\mu-1) r_{2}=(\mu-9) r_{3}=0$
$\Longrightarrow \mu=1$ or $\mu=9$

Bonus Problem 5. Solve the following system of differential equations (find all solutions):

$$
\left\{\begin{array}{l}
\frac{d x}{d t}=x+2 y \\
\frac{d y}{d t}=x+y+z \\
\frac{d z}{d t}=2 y+z
\end{array}\right.
$$

Let $\mathbf{v}=(x, y, z)$. Then the system can be rewritten in vector form

$$
\frac{d \mathbf{v}}{d t}=B \mathbf{v}, \text { where } B=\left(\begin{array}{lll}
1 & 2 & 0 \\
1 & 1 & 1 \\
0 & 2 & 1
\end{array}\right)
$$

Matrix B admits a basis of eigenvectors:
$\mathbf{v}_{1}=(1,-1,1), \mathbf{v}_{2}=(-1,0,1), \mathbf{v}_{3}=(1,1,1)$.
We have $B \mathbf{v}_{1}=-\mathbf{v}_{1}, B \mathbf{v}_{2}=\mathbf{v}_{2}, B \mathbf{v}_{3}=3 \mathbf{v}_{3}$.
The vector-function $\mathbf{v}(t)$ is uniquely represented as $\mathbf{v}(t)=r_{1}(t) \mathbf{v}_{1}+r_{2}(t) \mathbf{v}_{2}+r_{3}(t) \mathbf{v}_{3}$, where $r_{1}(t)$, $r_{2}(t)$, and $r_{3}(t)$ are scalar functions.

$$
\begin{gathered}
\frac{d \mathbf{v}}{d t}=\frac{d r_{1}}{d t} \mathbf{v}_{1}+\frac{d r_{2}}{d t} \mathbf{v}_{2}+\frac{d r_{3}}{d t} \mathbf{v}_{3}, \\
B \mathbf{v}=r_{1} B \mathbf{v}_{1}+r_{2} B \mathbf{v}_{2}+r_{3} B \mathbf{v}_{3}=-r_{1} \mathbf{v}_{1}+r_{2} \mathbf{v}_{2}+3 r_{3} \mathbf{v}_{3} . \\
\frac{d \mathbf{v}}{d t}=B \mathbf{v} \Longleftrightarrow\left\{\begin{array}{l}
\frac{d r_{1}}{d t}=-r_{1} \\
\frac{d r_{2}}{d t}=r_{2} \\
\frac{d r_{3}}{d t}=3 r_{3}
\end{array}\right.
\end{gathered}
$$

The general solution: $r_{1}(t)=c_{1} e^{-t}, r_{2}(t)=c_{2} e^{t}$, $r_{3}(t)=c_{3} e^{3 t}$, where c_{1}, c_{2}, c_{3} are arbitrary constants.

Thus $\mathbf{v}(t)=r_{1}(t) \mathbf{v}_{1}+r_{2}(t) \mathbf{v}_{2}+r_{3}(t) \mathbf{v}_{3}=$ $=c_{1} e^{-t}(1,-1,1)+c_{2} e^{t}(-1,0,1)+c_{3} e^{3 t}(1,1,1)$.

$$
\left\{\begin{array}{l}
x(t)=c_{1} e^{-t}-c_{2} e^{t}+c_{3} e^{3 t} \\
y(t)=-c_{1} e^{-t}+c_{3} e^{3 t} \\
z(t)=c_{1} e^{-t}+c_{2} e^{t}+c_{3} e^{3 t}
\end{array}\right.
$$

