MATH 311-504 Topics in Applied Mathematics Lecture 2-2: Linear maps (continued). Matrix transformations.

Vector space

Vector space is a set *V* equipped with two operations $\alpha : V \times V \to V$ and $\mu : \mathbb{R} \times V \to V$ that have certain properties (listed below).

The operation α is called *addition*. For any $\mathbf{u}, \mathbf{v} \in V$, the element $\alpha(\mathbf{u}, \mathbf{v})$ is denoted $\mathbf{u} + \mathbf{v}$.

The operation μ is called *scalar multiplication*. For any $r \in \mathbb{R}$ and $\mathbf{u} \in V$, the element $\mu(r, \mathbf{u})$ is denoted $r\mathbf{u}$. Properties of addition and scalar multiplication

A1. $\mathbf{a} + \mathbf{b} = \mathbf{b} + \mathbf{a}$ for all $\mathbf{a}, \mathbf{b} \in V$.

A2. $(\mathbf{a} + \mathbf{b}) + \mathbf{c} = \mathbf{a} + (\mathbf{b} + \mathbf{c})$ for all $\mathbf{a}, \mathbf{b}, \mathbf{c} \in V$.

A3. There exists an element of V, called the *zero* vector and denoted **0**, such that $\mathbf{a} + \mathbf{0} = \mathbf{0} + \mathbf{a} = \mathbf{a}$ for all $\mathbf{a} \in V$.

A4. For any $\mathbf{a} \in V$ there exists an element of V, denoted $-\mathbf{a}$, such that $\mathbf{a} + (-\mathbf{a}) = (-\mathbf{a}) + \mathbf{a} = \mathbf{0}$. A5. $r(\mathbf{a} + \mathbf{b}) = r\mathbf{a} + r\mathbf{b}$ for all $r \in \mathbb{R}$ and $\mathbf{a}, \mathbf{b} \in V$. A6. $(r + s)\mathbf{a} = r\mathbf{a} + s\mathbf{a}$ for all $r, s \in \mathbb{R}$ and $\mathbf{a} \in V$. A7. $(rs)\mathbf{a} = r(s\mathbf{a})$ for all $r, s \in \mathbb{R}$ and $\mathbf{a} \in V$. A8. $1\mathbf{a} = \mathbf{a}$ for all $\mathbf{a} \in V$.

Examples of vector spaces

- \mathbb{R}^n : *n*-dimensional coordinate vectors
- $\mathcal{M}_{m,n}(\mathbb{R})$: $m \times n$ matrices with real entries
- \mathbb{R}^{∞} : infinite sequences $(x_1, x_2, \dots), x_i \in \mathbb{R}$
- {0}: the trivial vector space
- $F(\mathbb{R})$: the set of all functions $f:\mathbb{R}\to\mathbb{R}$
- $C(\mathbb{R})$: all continuous functions $f:\mathbb{R}\to\mathbb{R}$
- $C^1(\mathbb{R})$: all continuously differentiable functions $f: \mathbb{R} \to \mathbb{R}$
- $C^{\infty}(\mathbb{R})$: all smooth functions $f:\mathbb{R}\to\mathbb{R}$
- \mathcal{P} : all polynomials $p(x) = a_0 + a_1 x + \cdots + a_n x^n$

Linear mapping = linear transformation = linear function

Definition. Given vector spaces V_1 and V_2 , a mapping $L: V_1 \rightarrow V_2$ is **linear** if $L(\mathbf{x} + \mathbf{y}) = L(\mathbf{x}) + L(\mathbf{y}),$

$$L(r\mathbf{x}) = rL(\mathbf{x})$$

for any $\mathbf{x}, \mathbf{y} \in V_1$ and $r \in \mathbb{R}$.

Remark. A function $f : \mathbb{R} \to \mathbb{R}$ given by f(x) = ax + b is a linear transformation of the vector space \mathbb{R} if and only if b = 0.

Properties of linear mappings

Let
$$L: V_1 \to V_2$$
 be a linear mapping.
• $L(r_1\mathbf{v}_1 + \dots + r_k\mathbf{v}_k) = r_1L(\mathbf{v}_1) + \dots + r_kL(\mathbf{v}_k)$
for all $k \ge 1$, $\mathbf{v}_1, \dots, \mathbf{v}_k \in V_1$, and $r_1, \dots, r_k \in \mathbb{R}$.
 $L(r_1\mathbf{v}_1 + r_2\mathbf{v}_2) = L(r_1\mathbf{v}_1) + L(r_2\mathbf{v}_2) = r_1L(\mathbf{v}_1) + r_2L(\mathbf{v}_2)$,
 $L(r_1\mathbf{v}_1 + r_2\mathbf{v}_2 + r_3\mathbf{v}_3) = L(r_1\mathbf{v}_1 + r_2\mathbf{v}_2) + L(r_3\mathbf{v}_3) =$
 $= r_1L(\mathbf{v}_1) + r_2L(\mathbf{v}_2) + r_3L(\mathbf{v}_3)$, and so on.

• $L(\mathbf{0}_1) = \mathbf{0}_2$, where $\mathbf{0}_1$ and $\mathbf{0}_2$ are zero vectors in V_1 and V_2 , respectively.

 $L(\mathbf{0}_1) = L(0\mathbf{0}_1) = 0L(\mathbf{0}_1) = \mathbf{0}_2.$

•
$$L(-\mathbf{v}) = -L(\mathbf{v})$$
 for any $\mathbf{v} \in V_1$.
 $L(-\mathbf{v}) = L((-1)\mathbf{v}) = (-1)L(\mathbf{v}) = -L(\mathbf{v})$.

Examples of linear mappings

• Scaling
$$L: V \to V$$
, $L(\mathbf{v}) = s\mathbf{v}$, where $s \in \mathbb{R}$.

• Dot product with a fixed vector $\ell : \mathbb{R}^n \to \mathbb{R}, \ \ell(\mathbf{v}) = \mathbf{v} \cdot \mathbf{v}_0, \ \text{where } \mathbf{v}_0 \in \mathbb{R}^n.$

• Cross product with a fixed vector
$$L: \mathbb{R}^3 \to \mathbb{R}^3, \ L(\mathbf{v}) = \mathbf{v} \times \mathbf{v}_0, \text{ where } \mathbf{v}_0 \in \mathbb{R}^3.$$

• Multiplication by a fixed matrix $L : \mathbb{R}^n \to \mathbb{R}^m$, $L(\mathbf{v}) = A\mathbf{v}$, where A is an $m \times n$ matrix and all vectors are column vectors.

Linear mappings of functional vector spaces

• Evaluation at a fixed point

 $\ell: F(\mathbb{R}) \to \mathbb{R}, \ \ell(f) = f(a), \text{ where } a \in \mathbb{R}.$

- Multiplication by a fixed function $L: F(\mathbb{R}) \to F(\mathbb{R}), \ L(f) = gf$, where $g \in F(\mathbb{R})$.
- Differentiation $D: C^1(\mathbb{R}) \to C(\mathbb{R}), \ L(f) = f'.$
- Integration over a finite interval $\ell : C(\mathbb{R}) \to \mathbb{R}, \ \ell(f) = \int_{a}^{b} f(x) dx$, where $a, b \in \mathbb{R}, \ a < b$.

Theorem Let V_1 , V_2 , V_3 be vector spaces. If mappings $f : V_1 \rightarrow V_2$ and $g : V_2 \rightarrow V_3$ are linear then their composition $h = g \circ f : V_1 \rightarrow V_3$ given by $h(\mathbf{v}) = g(f(\mathbf{v}))$ is also linear.

$$\begin{aligned} h(\mathbf{x} + \mathbf{y}) &= g(f(\mathbf{x} + \mathbf{y})) = g(f(\mathbf{x}) + f(\mathbf{y})) = \\ &= g(f(\mathbf{x})) + g(f(\mathbf{y})) = h(\mathbf{x}) + h(\mathbf{y}), \\ h(r\mathbf{x}) &= g(f(r\mathbf{x})) = g(rf(\mathbf{x})) = rg(f(\mathbf{x})) = rh(\mathbf{x}). \end{aligned}$$

Examples. •
$$\ell : C^1(\mathbb{R}) \to \mathbb{R}, \ \ell(f) = f'(a).$$

• $\ell : C[a, b] \to \mathbb{R}, \ \ell(f) = \int_a^b g(x)f(x) \, dx.$

• Integral operator
$$L : C[a, b] \rightarrow C[a, b]$$
,
 $(L(f))(x) = \int_{a}^{b} G(x, y) f(y) dy.$

Linear differential operators

• an ordinary differential operator

$$L: C^\infty(\mathbb{R}) o C^\infty(\mathbb{R}), \quad L = g_0 rac{d^2}{dx^2} + g_1 rac{d}{dx} + g_2,$$

where g_0, g_1, g_2 are smooth functions on \mathbb{R} . That is, $L(f) = g_0 f'' + g_1 f' + g_2 f$.

• Laplace's operator $\Delta : C^{\infty}(\mathbb{R}^2) \to C^{\infty}(\mathbb{R}^2)$, $\Delta f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$

(a.k.a. the Laplacian; also denoted by ∇^2).

Matrix transformations

Any $m \times n$ matrix A gives rise to a transformation $L : \mathbb{R}^n \to \mathbb{R}^m$ given by $L(\mathbf{x}) = A\mathbf{x}$, where all vectors are regarded as column vectors. This transformation is **linear**.

Example.
$$L\begin{pmatrix}x\\y\\z\end{pmatrix} = \begin{pmatrix}1 & 0 & 2\\3 & 4 & 7\\0 & 5 & 8\end{pmatrix}\begin{pmatrix}x\\y\\z\end{pmatrix}$$

Let $\mathbf{e}_1 = (1, 0, 0)$, $\mathbf{e}_2 = (0, 1, 0)$, $\mathbf{e}_3 = (0, 0, 1)$ be the standard basis for \mathbb{R}^3 . We have that $L(\mathbf{e}_1) = (1, 3, 0)$, $L(\mathbf{e}_2) = (0, 4, 5)$, $L(\mathbf{e}_3) = (2, 7, 8)$. Thus $L(\mathbf{e}_1), L(\mathbf{e}_2), L(\mathbf{e}_3)$ are columns of the matrix. **Problem.** Find a linear mapping $L : \mathbb{R}^3 \to \mathbb{R}^2$ such that $L(\mathbf{e}_1) = (1, 1)$, $L(\mathbf{e}_2) = (0, -2)$, $L(\mathbf{e}_3) = (3, 0)$, where $\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3$ is the standard basis for \mathbb{R}^3 .

$$L(x, y, z) = L(x\mathbf{e}_1 + y\mathbf{e}_2 + z\mathbf{e}_3)$$

= $xL(\mathbf{e}_1) + yL(\mathbf{e}_2) + zL(\mathbf{e}_3)$
= $x(1, 1) + y(0, -2) + z(3, 0) = (x + 3z, x - 2y)$
 $L(x, y, z) = \begin{pmatrix} x + 3z \\ x - 2y \end{pmatrix} = \begin{pmatrix} 1 & 0 & 3 \\ 1 & -2 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$

Columns of the matrix are vectors $L(\mathbf{e}_1), L(\mathbf{e}_2), L(\mathbf{e}_3)$.

Theorem Suppose $L : \mathbb{R}^n \to \mathbb{R}^m$ is a linear map. Then there exists an $m \times n$ matrix A such that $L(\mathbf{x}) = A\mathbf{x}$ for all $\mathbf{x} \in \mathbb{R}^n$. The columns of A are vectors $L(\mathbf{e}_1), L(\mathbf{e}_2), \ldots, L(\mathbf{e}_n)$, where $\mathbf{e}_1, \mathbf{e}_2, \ldots, \mathbf{e}_n$ is the standard basis for \mathbb{R}^n .

Problem Find a linear mapping $L : \mathbb{R}^2 \to \mathbb{R}^3$ such that L(2,1) = (1,2,1) and L(3,1) = (0,1,1). Let $\mathbf{v}_1 = (2, 1)$, $\mathbf{v}_2 = (3, 1)$. Then $\mathbf{e}_1 = \mathbf{v}_2 - \mathbf{v}_1$, $\mathbf{e}_2 = 3\mathbf{v}_1 - 2\mathbf{v}_2$. Since L is linear, it follows that $L(\mathbf{e}_1) = L(\mathbf{v}_2) - L(\mathbf{v}_1) = (0, 1, 1) - (1, 2, 1) = (-1, -1, 0),$ $L(\mathbf{e}_2) = 3L(\mathbf{v}_1) - 2L(\mathbf{v}_2) = 3(1,2,1) - 2(0,1,1) = (3,4,1).$ Thus $L\begin{pmatrix}x\\y\end{pmatrix} = \begin{pmatrix}-1 & 3\\-1 & 4\\0 & 1\end{pmatrix}\begin{pmatrix}x\\y\end{pmatrix}$.

Linear transformations of \mathbb{R}^2

Any linear mapping $f : \mathbb{R}^2 \to \mathbb{R}^2$ is represented as multiplication of a 2-dimensional column vector by a 2×2 matrix: $f(\mathbf{x}) = A\mathbf{x}$ or

$$f\begin{pmatrix} x\\ y \end{pmatrix} = \begin{pmatrix} a & b\\ c & d \end{pmatrix} \begin{pmatrix} x\\ y \end{pmatrix}.$$

Linear transformations corresponding to different matrices can have various geometric properties.

