# MATH 311-504 <br> Topics in Applied Mathematics 

Lecture 2-2:<br>Linear maps (continued).<br>Matrix transformations.

## Vector space

Vector space is a set $V$ equipped with two operations $\alpha: V \times V \rightarrow V$ and $\mu: \mathbb{R} \times V \rightarrow V$ that have certain properties (listed below).

The operation $\alpha$ is called addition. For any
$\mathbf{u}, \mathbf{v} \in V$, the element $\alpha(\mathbf{u}, \mathbf{v})$ is denoted $\mathbf{u}+\mathbf{v}$.
The operation $\mu$ is called scalar multiplication. For any $r \in \mathbb{R}$ and $\mathbf{u} \in V$, the element $\mu(r, \mathbf{u})$ is denoted $r \mathbf{u}$.

## Properties of addition and scalar multiplication

A1. $\mathbf{a}+\mathbf{b}=\mathbf{b}+\mathbf{a}$ for all $\mathbf{a}, \mathbf{b} \in V$.
A2. $(\mathbf{a}+\mathbf{b})+\mathbf{c}=\mathbf{a}+(\mathbf{b}+\mathbf{c})$ for all $\mathbf{a}, \mathbf{b}, \mathbf{c} \in V$.
A3. There exists an element of $V$, called the zero vector and denoted $\mathbf{0}$, such that $\mathbf{a}+\mathbf{0}=\mathbf{0}+\mathbf{a}=\mathbf{a}$ for all $\mathbf{a} \in V$.
A4. For any $\mathbf{a} \in V$ there exists an element of $V$, denoted $-\mathbf{a}$, such that $\mathbf{a}+(-\mathbf{a})=(-\mathbf{a})+\mathbf{a}=\mathbf{0}$. A5. $r(\mathbf{a}+\mathbf{b})=r \mathbf{a}+r \mathbf{b}$ for all $r \in \mathbb{R}$ and $\mathbf{a}, \mathbf{b} \in V$. A6. $(r+s) \mathbf{a}=r \mathbf{a}+s \mathbf{a}$ for all $r, s \in \mathbb{R}$ and $\mathbf{a} \in V$. A7. $(r s) \mathbf{a}=r(s \mathbf{a})$ for all $r, s \in \mathbb{R}$ and $\mathbf{a} \in V$. A8. $1 \mathbf{a}=\mathbf{a}$ for all $\mathbf{a} \in V$.

## Examples of vector spaces

- $\mathbb{R}^{n}$ : n-dimensional coordinate vectors
- $\mathcal{M}_{m, n}(\mathbb{R}): m \times n$ matrices with real entries
- $\mathbb{R}^{\infty}$ : infinite sequences $\left(x_{1}, x_{2}, \ldots\right), x_{i} \in \mathbb{R}$
- $\{\mathbf{0}\}$ : the trivial vector space
- $F(\mathbb{R})$ : the set of all functions $f: \mathbb{R} \rightarrow \mathbb{R}$
- $C(\mathbb{R})$ : all continuous functions $f: \mathbb{R} \rightarrow \mathbb{R}$
- $C^{1}(\mathbb{R})$ : all continuously differentiable functions
$f: \mathbb{R} \rightarrow \mathbb{R}$
- $C^{\infty}(\mathbb{R})$ : all smooth functions $f: \mathbb{R} \rightarrow \mathbb{R}$
- $\mathcal{P}$ : all polynomials $p(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n}$


## Linear mapping $=$ linear transformation $=$ linear function

Definition. Given vector spaces $V_{1}$ and $V_{2}$, a mapping $L: V_{1} \rightarrow V_{2}$ is linear if

$$
L(\mathbf{x}+\mathbf{y})=L(\mathbf{x})+L(\mathbf{y})
$$

$$
L(r \mathbf{x})=r L(\mathbf{x})
$$

for any $\mathbf{x}, \mathbf{y} \in V_{1}$ and $r \in \mathbb{R}$.
Remark. A function $f: \mathbb{R} \rightarrow \mathbb{R}$ given by $f(x)=a x+b$ is a linear transformation of the vector space $\mathbb{R}$ if and only if $b=0$.

## Properties of linear mappings

Let $L: V_{1} \rightarrow V_{2}$ be a linear mapping.

- $L\left(r_{1} \mathbf{v}_{1}+\cdots+r_{k} \mathbf{v}_{k}\right)=r_{1} L\left(\mathbf{v}_{1}\right)+\cdots+r_{k} L\left(\mathbf{v}_{k}\right)$ for all $k \geq 1, \mathbf{v}_{1}, \ldots, \mathbf{v}_{k} \in V_{1}$, and $r_{1}, \ldots, r_{k} \in \mathbb{R}$.
$L\left(r_{1} \mathbf{v}_{1}+r_{2} \mathbf{v}_{2}\right)=L\left(r_{1} \mathbf{v}_{1}\right)+L\left(r_{2} \mathbf{v}_{2}\right)=r_{1} L\left(\mathbf{v}_{1}\right)+r_{2} L\left(\mathbf{v}_{2}\right)$,
$L\left(r_{1} \mathbf{v}_{1}+r_{2} \mathbf{v}_{2}+r_{3} \mathbf{v}_{3}\right)=L\left(r_{1} \mathbf{v}_{1}+r_{2} \mathbf{v}_{2}\right)+L\left(r_{3} \mathbf{v}_{3}\right)=$ $=r_{1} L\left(\mathbf{v}_{1}\right)+r_{2} L\left(\mathbf{v}_{2}\right)+r_{3} L\left(\mathbf{v}_{3}\right)$, and so on.
- $L\left(\mathbf{0}_{1}\right)=\mathbf{0}_{2}$, where $\mathbf{0}_{1}$ and $\mathbf{0}_{2}$ are zero vectors in $V_{1}$ and $V_{2}$, respectively.
$L\left(\mathbf{0}_{1}\right)=L\left(0 \mathbf{0}_{1}\right)=0 L\left(\mathbf{0}_{1}\right)=\mathbf{0}_{2}$.
- $L(-\mathbf{v})=-L(\mathbf{v})$ for any $\mathbf{v} \in V_{1}$.
$L(-\mathbf{v})=L((-1) \mathbf{v})=(-1) L(\mathbf{v})=-L(\mathbf{v})$.


## Examples of linear mappings

- Scaling $L: V \rightarrow V, L(\mathbf{v})=s \mathbf{v}$, where $s \in \mathbb{R}$.
- Dot product with a fixed vector $\ell: \mathbb{R}^{n} \rightarrow \mathbb{R}, \ell(\mathbf{v})=\mathbf{v} \cdot \mathbf{v}_{0}$, where $\mathbf{v}_{0} \in \mathbb{R}^{n}$.
- Cross product with a fixed vector
$L: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}, L(\mathbf{v})=\mathbf{v} \times \mathbf{v}_{0}$, where $\mathbf{v}_{0} \in \mathbb{R}^{3}$.
- Multiplication by a fixed matrix
$L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}, L(\mathbf{v})=A \mathbf{v}$, where $A$ is an $m \times n$ matrix and all vectors are column vectors.


## Linear mappings of functional vector spaces

- Evaluation at a fixed point $\ell: F(\mathbb{R}) \rightarrow \mathbb{R}, \quad \ell(f)=f(a)$, where $a \in \mathbb{R}$.
- Multiplication by a fixed function
$L: F(\mathbb{R}) \rightarrow F(\mathbb{R}), \quad L(f)=g f$, where $g \in F(\mathbb{R})$.
- Differentiation $D: C^{1}(\mathbb{R}) \rightarrow C(\mathbb{R}), \quad L(f)=f^{\prime}$.
- Integration over a finite interval
$\ell: C(\mathbb{R}) \rightarrow \mathbb{R}, \quad \ell(f)=\int_{a}^{b} f(x) d x$, where $a, b \in \mathbb{R}, a<b$.

Theorem Let $V_{1}, V_{2}, V_{3}$ be vector spaces. If mappings $f: V_{1} \rightarrow V_{2}$ and $g: V_{2} \rightarrow V_{3}$ are linear then their composition $h=g \circ f: V_{1} \rightarrow V_{3}$ given by $h(\mathbf{v})=g(f(\mathbf{v}))$ is also linear.
$h(\mathbf{x}+\mathbf{y})=g(f(\mathbf{x}+\mathbf{y}))=g(f(\mathbf{x})+f(\mathbf{y}))=$

$$
=g(f(\mathbf{x}))+g(f(\mathbf{y}))=h(\mathbf{x})+h(\mathbf{y})
$$

$h(r \mathbf{x})=g(f(r \mathbf{x}))=g(r f(\mathbf{x}))=r g(f(\mathbf{x}))=r h(\mathbf{x})$.
Examples. - $\ell: C^{1}(\mathbb{R}) \rightarrow \mathbb{R}, \quad \ell(f)=f^{\prime}(a)$.

- $\ell: C[a, b] \rightarrow \mathbb{R}, \quad \ell(f)=\int_{a}^{b} g(x) f(x) d x$.
- Integral operator $L: C[a, b] \rightarrow C[a, b]$,
$(L(f))(x)=\int_{a}^{b} G(x, y) f(y) d y$.


## Linear differential operators

- an ordinary differential operator

$$
L: C^{\infty}(\mathbb{R}) \rightarrow C^{\infty}(\mathbb{R}), \quad L=g_{0} \frac{d^{2}}{d x^{2}}+g_{1} \frac{d}{d x}+g_{2}
$$

where $g_{0}, g_{1}, g_{2}$ are smooth functions on $\mathbb{R}$.
That is, $L(f)=g_{0} f^{\prime \prime}+g_{1} f^{\prime}+g_{2} f$.

- Laplace's operator $\Delta: C^{\infty}\left(\mathbb{R}^{2}\right) \rightarrow C^{\infty}\left(\mathbb{R}^{2}\right)$,

$$
\Delta f=\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}
$$

(a.k.a. the Laplacian; also denoted by $\nabla^{2}$ ).

## Matrix transformations

Any $m \times n$ matrix $A$ gives rise to a transformation $L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ given by $L(\mathbf{x})=A \mathbf{x}$, where all vectors are regarded as column vectors. This transformation is linear.

Example. $L\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{lll}1 & 0 & 2 \\ 3 & 4 & 7 \\ 0 & 5 & 8\end{array}\right)\left(\begin{array}{l}x \\ y \\ z\end{array}\right)$.
Let $\mathbf{e}_{1}=(1,0,0), \mathbf{e}_{2}=(0,1,0), \mathbf{e}_{3}=(0,0,1)$ be the standard basis for $\mathbb{R}^{3}$. We have that
$L\left(\mathbf{e}_{1}\right)=(1,3,0), \quad L\left(\mathbf{e}_{2}\right)=(0,4,5), \quad L\left(\mathbf{e}_{3}\right)=(2,7,8)$.
Thus $L\left(\mathbf{e}_{1}\right), L\left(\mathbf{e}_{2}\right), L\left(\mathbf{e}_{3}\right)$ are columns of the matrix.

Problem. Find a linear mapping $L: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ such that $L\left(\mathbf{e}_{1}\right)=(1,1), L\left(\mathbf{e}_{2}\right)=(0,-2)$, $L\left(\mathbf{e}_{3}\right)=(3,0)$, where $\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}$ is the standard basis for $\mathbb{R}^{3}$.

$$
\begin{gathered}
L(x, y, z)=L\left(x \mathbf{e}_{1}+y \mathbf{e}_{2}+z \mathbf{e}_{3}\right) \\
=x L\left(\mathbf{e}_{1}\right)+y L\left(\mathbf{e}_{2}\right)+z L\left(\mathbf{e}_{3}\right) \\
=x(1,1)+y(0,-2)+z(3,0)=(x+3 z, x-2 y) \\
L(x, y, z)=\binom{x+3 z}{x-2 y}=\left(\begin{array}{rrr}
1 & 0 & 3 \\
1 & -2 & 0
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)
\end{gathered}
$$

Columns of the matrix are vectors $L\left(\mathbf{e}_{1}\right), L\left(\mathbf{e}_{2}\right), L\left(\mathbf{e}_{3}\right)$.

Theorem Suppose $L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is a linear map. Then there exists an $m \times n$ matrix $A$ such that $L(\mathbf{x})=A \mathbf{x}$ for all $\mathbf{x} \in \mathbb{R}^{n}$. The columns of $A$ are vectors $L\left(\mathbf{e}_{1}\right), L\left(\mathbf{e}_{2}\right), \ldots, L\left(\mathbf{e}_{n}\right)$, where $\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{n}$ is the standard basis for $\mathbb{R}^{n}$.

Problem Find a linear mapping $L: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ such that $L(2,1)=(1,2,1)$ and $L(3,1)=(0,1,1)$. Let $\mathbf{v}_{1}=(2,1), \mathbf{v}_{2}=(3,1)$. Then $\mathbf{e}_{1}=\mathbf{v}_{2}-\mathbf{v}_{1}$, $\mathbf{e}_{2}=3 \mathbf{v}_{1}-2 \mathbf{v}_{2}$. Since $L$ is linear, it follows that

$$
\begin{aligned}
& L\left(\mathbf{e}_{1}\right)=L\left(\mathbf{v}_{2}\right)-L\left(\mathbf{v}_{1}\right)=(0,1,1)-(1,2,1)=(-1,-1,0), \\
& L\left(\mathbf{e}_{2}\right)=3 L\left(\mathbf{v}_{1}\right)-2 L\left(\mathbf{v}_{2}\right)=3(1,2,1)-2(0,1,1)=(3,4,1) .
\end{aligned}
$$

Thus $L\binom{x}{y}=\left(\begin{array}{rr}-1 & 3 \\ -1 & 4 \\ 0 & 1\end{array}\right)\binom{x}{y}$.

## Linear transformations of $\mathbb{R}^{2}$

Any linear mapping $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is represented as multiplication of a 2-dimensional column vector by a $2 \times 2$ matrix: $f(\mathbf{x})=A \mathbf{x}$ or

$$
f\binom{x}{y}=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\binom{x}{y} .
$$

Linear transformations corresponding to different matrices can have various geometric properties.


$$
A=\left(\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right)
$$



## Rotation by $90^{\circ}$



$$
A=\left(\begin{array}{cc}
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right)
$$



Rotation by $45^{\circ}$


$$
A=\left(\begin{array}{rr}
-1 & 0 \\
0 & 1
\end{array}\right)
$$



Reflection in the vertical axis



$$
A=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$



Reflection in the line $x-y=0$



$$
A=\left(\begin{array}{cc}
1 & 1 / 2 \\
0 & 1
\end{array}\right)
$$

Horizontal shear


$$
A=\left(\begin{array}{cc}
1 / 2 & 0 \\
0 & 1 / 2
\end{array}\right)
$$



## Scaling



$$
A=\left(\begin{array}{cc}
3 & 0 \\
0 & 1 / 3
\end{array}\right)
$$



Squeeze



$$
A=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)
$$

Vertical projection on the horizontal axis


$$
A=\left(\begin{array}{rr}
0 & -1 \\
0 & 1
\end{array}\right)
$$



## Horizontal projection on the line $x+y=0$



$$
A=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$



Identity

