MATH 311-504 Topics in Applied Mathematics

Lecture 2-3:
Subspaces of vector spaces.
Span.

Vector space

A *vector space* is a set V equipped with two operations, addition

$$V \times V \ni (\mathbf{x}, \mathbf{y}) \mapsto \mathbf{x} + \mathbf{y} \in V$$

and scalar multiplication

$$\mathbb{R} \times V \ni (r, \mathbf{x}) \mapsto r\mathbf{x} \in V$$
,

that have the following properties:

A1.
$$a + b = b + a$$

A2.
$$(a + b) + c = a + (b + c)$$

A3.
$$a + 0 = 0 + a = a$$

A4.
$$a + (-a) = (-a) + a = 0$$

$$\mathsf{A5}.\quad r(\mathsf{a}+\mathsf{b})=r\mathsf{a}+r\mathsf{b}$$

A6.
$$(r+s)\mathbf{a} = r\mathbf{a} + s\mathbf{a}$$

A7.
$$(rs)a = r(sa)$$

A8.
$$1a = a$$

Examples of vector spaces

- \mathbb{R}^n : *n*-dimensional coordinate vectors
- $\mathcal{M}_{m,n}(\mathbb{R})$: $m \times n$ matrices with real entries
- \mathbb{R}^{∞} : infinite sequences (x_1, x_2, \dots) , $x_i \in \mathbb{R}$
- {**0**}: the trivial vector space
- $F(\mathbb{R})$: the set of all functions $f: \mathbb{R} \to \mathbb{R}$
- $C(\mathbb{R})$: all continuous functions $f: \mathbb{R} \to \mathbb{R}$
- $C^1(\mathbb{R})$: all continuously differentiable functions
- $f: \mathbb{R} \to \mathbb{R}$
 - $C^{\infty}(\mathbb{R})$: all smooth functions $f: \mathbb{R} \to \mathbb{R}$
 - \mathcal{P} : all polynomials $p(x) = a_0 + a_1 x + \cdots + a_n x^n$

Subspaces of vector spaces

Definition. A vector space V_0 is a **subspace** of a vector space V if $V_0 \subset V$ and the linear operations on V_0 agree with the linear operations on V.

Examples.

- $F(\mathbb{R})$: all functions $f: \mathbb{R} \to \mathbb{R}$
- $C(\mathbb{R})$: all continuous functions $f: \mathbb{R} \to \mathbb{R}$ $C(\mathbb{R})$ is a subspace of $F(\mathbb{R})$.
 - \mathcal{P} : polynomials $p(x) = a_0 + a_1 x + \cdots + a_n x^n$
 - \mathcal{P}_n : polynomials of degree at most n

 \mathcal{P}_n is a subspace of \mathcal{P} .

If S is a subset of a vector space V then S inherits from V addition and scalar multiplication. However S need not be closed under these operations.

Proposition A subset S of a vector space V is a subspace of V if and only if S is **nonempty** and **closed under linear operations**, i.e.,

$$\mathbf{x}, \mathbf{y} \in S \implies \mathbf{x} + \mathbf{y} \in S,$$

 $\mathbf{x} \in S \implies r\mathbf{x} \in S \text{ for all } r \in \mathbb{R}.$

Proof: "only if" is obvious.

"if": properties like associative, commutative, or distributive law hold for S because they hold for V. We only need to verify properties A3 and A4. Take any $\mathbf{x} \in S$ (note that S is nonempty). Then $\mathbf{0} = 0\mathbf{x} \in S$. Also, $-\mathbf{x} = (-1)\mathbf{x} \in S$.

System of linear equations:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ \dots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \end{cases}$$

Any solution (x_1, x_2, \dots, x_n) is an element of \mathbb{R}^n .

Theorem The solution set of the system is a subspace of \mathbb{R}^n if and only if all $b_i = 0$.

Proof: "only if": the zero vector $\mathbf{0} = (0, 0, \dots, 0)$ is a solution only if all equations are homogeneous.

"if": a system of homogeneous linear equations is equivalent to a matrix equation $A\mathbf{x}=\mathbf{0}$.

$$A\mathbf{0} = \mathbf{0} \implies \mathbf{0}$$
 is a solution \implies solution set is not empty. If $A\mathbf{x} = \mathbf{0}$ and $A\mathbf{y} = \mathbf{0}$ then $A(\mathbf{x} + \mathbf{y}) = A\mathbf{x} + A\mathbf{y} = \mathbf{0}$. If $A\mathbf{x} = \mathbf{0}$ then $A(r\mathbf{x}) = r(A\mathbf{x}) = \mathbf{0}$.

Let V be a vector space and $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n \in V$. Consider the set L of all linear combinations $r_1\mathbf{v}_1 + r_2\mathbf{v}_2 + \dots + r_n\mathbf{v}_n$, where $r_1, r_2, \dots, r_n \in \mathbb{R}$.

Theorem L is a subspace of V.

Proof: First of all, L is not empty. For example, $\mathbf{0} = 0\mathbf{v}_1 + 0\mathbf{v}_2 + \cdots + 0\mathbf{v}_n$ belongs to L.

The set L is closed under addition since

$$(r_1\mathbf{v}_1+r_2\mathbf{v}_2+\cdots+r_n\mathbf{v}_n)+(s_1\mathbf{v}_1+s_2\mathbf{v}_2+\cdots+s_n\mathbf{v}_n)=$$

= $(r_1+s_1)\mathbf{v}_1+(r_2+s_2)\mathbf{v}_2+\cdots+(r_n+s_n)\mathbf{v}_n.$

The set L is closed under scalar multiplication since $t(r_1\mathbf{v}_1+r_2\mathbf{v}_2+\cdots+r_n\mathbf{v}_n)=(tr_1)\mathbf{v}_1+(tr_2)\mathbf{v}_2+\cdots+(tr_n)\mathbf{v}_n.$

Example. $V = \mathbb{R}^3$.

- The plane z = 0 is a subspace of \mathbb{R}^3 .
- The plane z = 1 is not a subspace of \mathbb{R}^3 .
- The line t(1,1,0), $t \in \mathbb{R}$ is a subspace of \mathbb{R}^3 and a subspace of the plane z=0.
- The line (1,1,1)+t(1,-1,0), $t\in\mathbb{R}$ is not a subspace of \mathbb{R}^3 as it lies in the plane x+y+z=3, which does not contain $\mathbf{0}$.
- The plane $t_1(1,0,0) + t_2(0,1,1)$, $t_1, t_2 \in \mathbb{R}$ is a subspace of \mathbb{R}^3 .
- In general, a line or a plane in \mathbb{R}^3 is a subspace if and only if it passes through the origin.

Examples of subspaces of $\mathcal{M}_2(\mathbb{R})$: $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$

- diagonal matrices: b = c = 0
- upper triangular matrices: c = 0
- lower triangular matrices: b = 0
- symmetric matrices $(A^T = A)$: b = c
- anti-symmetric matrices $(A^T = -A)$:
- a = d = 0, c = -b
- matrices with zero trace: a + d = 0 (trace = the sum of diagonal entries)
- matrices with zero determinant, ad-bc=0, **do not** form a subspace: $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.

Span: implicit definition

Let S be a subset of a vector space V.

Definition. The **span** of the set S, denoted Span(S), is the smallest subspace of V that contains S. That is,

- $\operatorname{Span}(S)$ is a subspace of V;
- for any subspace $W \subset V$ one has $S \subset W \implies \operatorname{Span}(S) \subset W$.

Remark. The span of any set $S \subset V$ is well defined (it is the intersection of all subspaces of V that contain S).

Span: effective description

Let S be a subset of a vector space V.

- If $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ then $\mathrm{Span}(S)$ is the set of all linear combinations $r_1\mathbf{v}_1 + r_2\mathbf{v}_2 + \dots + r_n\mathbf{v}_n$, where $r_1, r_2, \dots, r_n \in \mathbb{R}$.
- If S is an infinite set then $\mathrm{Span}(S)$ is the set of all linear combinations $r_1\mathbf{u}_1+r_2\mathbf{u}_2+\cdots+r_k\mathbf{u}_k$, where $\mathbf{u}_1,\mathbf{u}_2,\ldots,\mathbf{u}_k\in S$ and $r_1,r_2,\ldots,r_k\in\mathbb{R}$ $(k\geq 1)$.
 - If S is the empty set then $Span(S) = \{0\}$.

Spanning set

Definition. A subset S of a vector space V is called a **spanning set** for V if Span(S) = V.

Examples.

- Vectors $\mathbf{e}_1 = (1,0,0)$, $\mathbf{e}_2 = (0,1,0)$, and $\mathbf{e}_3 = (0,0,1)$ form a spanning set for \mathbb{R}^3 as $(x,y,z) = x\mathbf{e}_1 + y\mathbf{e}_2 + z\mathbf{e}_3$.
- Matrices $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$ form a spanning set for $\mathcal{M}_{2,2}(\mathbb{R})$ as

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} = a \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + b \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} + c \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} + d \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}.$$

Problem Let $\mathbf{v}_1 = (1, 2, 0)$, $\mathbf{v}_2 = (3, 1, 1)$, and $\mathbf{w} = (4, -7, 3)$. Determine whether \mathbf{w} belongs to $\mathrm{Span}(\mathbf{v}_1, \mathbf{v}_2)$.

We have to check if there exist $r_1, r_2 \in \mathbb{R}$ such that $\mathbf{w} = r_1 \mathbf{v}_1 + r_2 \mathbf{v}_2$. This vector equation is equivalent to a system of linear equations:

$$\begin{cases} 4 = r_1 + 3r_2 \\ -7 = 2r_1 + r_2 \\ 3 = 0r_1 + r_2 \end{cases} \iff \begin{cases} r_1 = -5 \\ r_2 = 3 \end{cases}$$

Thus $\mathbf{w} = -5\mathbf{v}_1 + 3\mathbf{v}_2 \in \text{Span}(\mathbf{v}_1, \mathbf{v}_2).$

Problem Let $\mathbf{v}_1 = (2,5)$ and $\mathbf{v}_2 = (1,3)$. Show that $\{\mathbf{v}_1, \mathbf{v}_2\}$ is a spanning set for \mathbb{R}^2 .

Notice that \mathbb{R}^2 is spanned by vectors $\mathbf{e}_1 = (1,0)$ and $\mathbf{e}_2 = (0,1)$ since $(x,y) = x\mathbf{e}_1 + y\mathbf{e}_2$.

Hence it is enough to check that vectors \mathbf{e}_1 and \mathbf{e}_2 belong to $\mathrm{Span}(\mathbf{v}_1,\mathbf{v}_2)$. Then

Span
$$(\mathbf{v}_1, \mathbf{v}_2)$$
. Then $\operatorname{Span}(\mathbf{v}_1, \mathbf{v}_2) \supset \operatorname{Span}(\mathbf{e}_1, \mathbf{e}_2) = \mathbb{R}^2.$

$$\mathbf{e}_1 = r_1 \mathbf{v}_1 + r_2 \mathbf{v}_2 \iff \begin{cases} 2r_1 + r_2 = 1 \\ 5r_1 + 3r_2 = 0 \end{cases} \iff \begin{cases} r_1 = 3 \\ r_2 = -5 \end{cases}$$

$$\mathbf{e}_2 = r_1 \mathbf{v}_1 + r_2 \mathbf{v}_2 \iff \begin{cases} 2r_1 + r_2 = 0 \\ 5r_1 + 3r_2 = 1 \end{cases} \iff \begin{cases} r_1 = -1 \\ r_2 = 2 \end{cases}$$

Thus $\mathbf{e}_1 = 3\mathbf{v}_1 - 5\mathbf{v}_2$ and $\mathbf{e}_2 = -\mathbf{v}_1 + 2\mathbf{v}_2$.