# MATH 311-504 <br> Topics in Applied Mathematics 

Lecture 2-3:
Subspaces of vector spaces. Span.

## Vector space

A vector space is a set $V$ equipped with two operations, addition

$$
V \times V \ni(\mathbf{x}, \mathbf{y}) \mapsto \mathbf{x}+\mathbf{y} \in V
$$

and scalar multiplication

$$
\mathbb{R} \times V \ni(r, \mathbf{x}) \mapsto r \mathbf{x} \in V
$$

that have the following properties:
A1. $\mathbf{a}+\mathbf{b}=\mathbf{b}+\mathbf{a}$
A2. $(\mathbf{a}+\mathbf{b})+\mathbf{c}=\mathbf{a}+(\mathbf{b}+\mathbf{c})$
A3. $\mathbf{a}+\mathbf{0}=\mathbf{0}+\mathbf{a}=\mathbf{a}$
A4. $\mathbf{a}+(-\mathbf{a})=(-\mathbf{a})+\mathbf{a}=\mathbf{0}$
A5. $r(\mathbf{a}+\mathbf{b})=r \mathbf{a}+r \mathbf{b}$
A6. $(r+s) \mathbf{a}=r \mathbf{a}+s \mathbf{a}$
A7. $(r s) \mathbf{a}=r(s \mathbf{a})$
A8. $\mathbf{1 a}=\mathbf{a}$

## Examples of vector spaces

- $\mathbb{R}^{n}$ : n-dimensional coordinate vectors
- $\mathcal{M}_{m, n}(\mathbb{R}): m \times n$ matrices with real entries
- $\mathbb{R}^{\infty}$ : infinite sequences $\left(x_{1}, x_{2}, \ldots\right), x_{i} \in \mathbb{R}$
- $\{\mathbf{0}\}$ : the trivial vector space
- $F(\mathbb{R})$ : the set of all functions $f: \mathbb{R} \rightarrow \mathbb{R}$
- $C(\mathbb{R})$ : all continuous functions $f: \mathbb{R} \rightarrow \mathbb{R}$
- $C^{1}(\mathbb{R})$ : all continuously differentiable functions
$f: \mathbb{R} \rightarrow \mathbb{R}$
- $C^{\infty}(\mathbb{R})$ : all smooth functions $f: \mathbb{R} \rightarrow \mathbb{R}$
- $\mathcal{P}$ : all polynomials $p(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n}$


## Subspaces of vector spaces

Definition. A vector space $V_{0}$ is a subspace of a vector space $V$ if $V_{0} \subset V$ and the linear operations on $V_{0}$ agree with the linear operations on $V$.

Examples.

- $F(\mathbb{R})$ : all functions $f: \mathbb{R} \rightarrow \mathbb{R}$
- $C(\mathbb{R})$ : all continuous functions $f: \mathbb{R} \rightarrow \mathbb{R}$
$C(\mathbb{R})$ is a subspace of $F(\mathbb{R})$.
- $\mathcal{P}$ : polynomials $p(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n}$
- $\mathcal{P}_{n}$ : polynomials of degree at most $n$
$\mathcal{P}_{n}$ is a subspace of $\mathcal{P}$.

If $S$ is a subset of a vector space $V$ then $S$ inherits from $V$ addition and scalar multiplication. However $S$ need not be closed under these operations. Proposition A subset $S$ of a vector space $V$ is a subspace of $V$ if and only if $S$ is nonempty and closed under linear operations, i.e.,

$$
\begin{gathered}
\mathbf{x}, \mathbf{y} \in S \Longrightarrow \mathbf{x}+\mathbf{y} \in S \\
\mathbf{x} \in S \Longrightarrow r \mathbf{x} \in S \text { for all } r \in \mathbb{R} .
\end{gathered}
$$

Proof: "only if" is obvious.
"if" : properties like associative, commutative, or distributive law hold for $S$ because they hold for $V$. We only need to verify properties A 3 and A 4 . Take any $\mathbf{x} \in S$ (note that $S$ is nonempty). Then $\mathbf{0}=0 \mathbf{x} \in S$. Also, $-\mathbf{x}=(-1) \mathbf{x} \in S$.

System of linear equations:
$\left\{\begin{array}{c}a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=b_{1} \\ \cdots \cdots \cdots \\ a_{m 1} x_{1}+a_{m 2} x_{2}+\cdots+a_{m n} x_{n}=b_{m}\end{array}\right.$
Any solution $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is an element of $\mathbb{R}^{n}$.
Theorem The solution set of the system is a subspace of $\mathbb{R}^{n}$ if and only if all $b_{i}=0$.

Proof: "only if" : the zero vector $\mathbf{0}=(0,0, \ldots, 0)$ is a solution only if all equations are homogeneous.
"if": a system of homogeneous linear equations is equivalent to a matrix equation $A \mathbf{x}=\mathbf{0}$.
$A \mathbf{0}=\mathbf{0} \Longrightarrow \mathbf{0}$ is a solution $\Longrightarrow$ solution set is not empty.
If $A \mathbf{x}=\mathbf{0}$ and $A \mathbf{y}=\mathbf{0}$ then $A(\mathbf{x}+\mathbf{y})=A \mathbf{x}+A \mathbf{y}=\mathbf{0}$.
If $A \mathbf{x}=\mathbf{0}$ then $A(r \mathbf{x})=r(A \mathbf{x})=\mathbf{0}$.

Let $V$ be a vector space and $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n} \in V$. Consider the set $L$ of all linear combinations $r_{1} \mathbf{v}_{1}+r_{2} \mathbf{v}_{2}+\cdots+r_{n} \mathbf{v}_{n}$, where $r_{1}, r_{2}, \ldots, r_{n} \in \mathbb{R}$.

Theorem $L$ is a subspace of $V$.
Proof: First of all, $L$ is not empty. For example,
$\mathbf{0}=0 \mathbf{v}_{1}+0 \mathbf{v}_{2}+\cdots+0 \mathbf{v}_{n}$ belongs to $L$.
The set $L$ is closed under addition since

$$
\begin{aligned}
& \left(r_{1} \mathbf{v}_{1}+r_{2} \mathbf{v}_{2}+\cdots+r_{n} \mathbf{v}_{n}\right)+\left(s_{1} \mathbf{v}_{1}+s_{2} \mathbf{v}_{2}+\cdots+s_{n} \mathbf{v}_{n}\right)= \\
& \quad=\left(r_{1}+s_{1}\right) \mathbf{v}_{1}+\left(r_{2}+s_{2}\right) \mathbf{v}_{2}+\cdots+\left(r_{n}+s_{n}\right) \mathbf{v}_{n} .
\end{aligned}
$$

The set $L$ is closed under scalar multiplication since

$$
t\left(r_{1} \mathbf{v}_{1}+r_{2} \mathbf{v}_{2}+\cdots+r_{n} \mathbf{v}_{n}\right)=\left(t r_{1}\right) \mathbf{v}_{1}+\left(t r_{2}\right) \mathbf{v}_{2}+\cdots+\left(t r_{n}\right) \mathbf{v}_{n}
$$

Example. $\quad V=\mathbb{R}^{3}$.

- The plane $z=0$ is a subspace of $\mathbb{R}^{3}$.
- The plane $z=1$ is not a subspace of $\mathbb{R}^{3}$.
- The line $t(1,1,0), t \in \mathbb{R}$ is a subspace of $\mathbb{R}^{3}$ and a subspace of the plane $z=0$.
- The line $(1,1,1)+t(1,-1,0), t \in \mathbb{R}$ is not a subspace of $\mathbb{R}^{3}$ as it lies in the plane $x+y+z=3$, which does not contain $\mathbf{0}$.
- The plane $t_{1}(1,0,0)+t_{2}(0,1,1), t_{1}, t_{2} \in \mathbb{R}$ is a subspace of $\mathbb{R}^{3}$.
- In general, a line or a plane in $\mathbb{R}^{3}$ is a subspace if and only if it passes through the origin.

Examples of subspaces of $\mathcal{M}_{2}(\mathbb{R}): \quad A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$

- diagonal matrices: $b=c=0$
- upper triangular matrices: $c=0$
- lower triangular matrices: $b=0$
- symmetric matrices $\left(A^{T}=A\right): \quad b=c$
- anti-symmetric matrices $\left(A^{T}=-A\right)$ :

$$
a=d=0, c=-b
$$

- matrices with zero trace: $a+d=0$
(trace $=$ the sum of diagonal entries)
- matrices with zero determinant, $a d-b c=0$, do not form a subspace: $\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)+\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$.


## Span: implicit definition

Let $S$ be a subset of a vector space $V$.
Definition. The span of the set $S$, denoted $\operatorname{Span}(S)$, is the smallest subspace of $V$ that contains $S$. That is,

- $\operatorname{Span}(S)$ is a subspace of $V$;
- for any subspace $W \subset V$ one has

$$
S \subset W \Longrightarrow \operatorname{span}(S) \subset W
$$

Remark. The span of any set $S \subset V$ is well defined (it is the intersection of all subspaces of $V$ that contain $S$ ).

## Span: effective description

Let $S$ be a subset of a vector space $V$.

- If $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ then $\operatorname{Span}(S)$ is the set of all linear combinations $r_{1} \mathbf{v}_{1}+r_{2} \mathbf{v}_{2}+\cdots+r_{n} \mathbf{v}_{n}$, where $r_{1}, r_{2}, \ldots, r_{n} \in \mathbb{R}$.
- If $S$ is an infinite set then $\operatorname{Span}(S)$ is the set of all linear combinations $r_{1} \mathbf{u}_{1}+r_{2} \mathbf{u}_{2}+\cdots+r_{k} \mathbf{u}_{k}$, where $\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{k} \in S$ and $r_{1}, r_{2}, \ldots, r_{k} \in \mathbb{R}$ $(k \geq 1)$.
- If $S$ is the empty set then $\operatorname{Span}(S)=\{\mathbf{0}\}$.


## Spanning set

Definition. A subset $S$ of a vector space $V$ is called a spanning set for $V$ if $\operatorname{Span}(S)=V$.
Examples.

- Vectors $\mathbf{e}_{1}=(1,0,0), \mathbf{e}_{2}=(0,1,0)$, and $\mathbf{e}_{3}=(0,0,1)$ form a spanning set for $\mathbb{R}^{3}$ as

$$
(x, y, z)=x \mathbf{e}_{1}+y \mathbf{e}_{2}+z \mathbf{e}_{3}
$$

- Matrices $\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)$
form a spanning set for $\mathcal{M}_{2,2}(\mathbb{R})$ as

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=a\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)+b\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)+c\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)+d\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right) .
$$

Problem Let $\mathbf{v}_{1}=(1,2,0), \mathbf{v}_{2}=(3,1,1)$, and $\mathbf{w}=(4,-7,3)$. Determine whether $\mathbf{w}$ belongs to $\operatorname{Span}\left(\mathbf{v}_{1}, \mathbf{v}_{2}\right)$.

We have to check if there exist $r_{1}, r_{2} \in \mathbb{R}$ such that $\mathbf{w}=r_{1} \mathbf{v}_{1}+r_{2} \mathbf{v}_{2}$. This vector equation is equivalent to a system of linear equations:
$\left\{\begin{aligned} 4 & =r_{1}+3 r_{2} \\ -7 & =2 r_{1}+r_{2} \\ 3 & =0 r_{1}+r_{2}\end{aligned} \Longleftrightarrow\left\{\begin{array}{l}r_{1}=-5 \\ r_{2}=3\end{array}\right.\right.$
Thus $\mathbf{w}=-5 \mathbf{v}_{1}+3 \mathbf{v}_{2} \in \operatorname{Span}\left(\mathbf{v}_{1}, \mathbf{v}_{2}\right)$.

Problem Let $\mathbf{v}_{1}=(2,5)$ and $\mathbf{v}_{2}=(1,3)$. Show that $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ is a spanning set for $\mathbb{R}^{2}$.

Notice that $\mathbb{R}^{2}$ is spanned by vectors $\mathbf{e}_{1}=(1,0)$ and $\mathbf{e}_{2}=(0,1)$ since $(x, y)=x \mathbf{e}_{1}+y \mathbf{e}_{2}$. Hence it is enough to check that vectors $\mathbf{e}_{1}$ and $\mathbf{e}_{2}$ belong to $\operatorname{Span}\left(\mathbf{v}_{1}, \mathbf{v}_{2}\right)$. Then

$$
\operatorname{Span}\left(\mathbf{v}_{1}, \mathbf{v}_{2}\right) \supset \operatorname{Span}\left(\mathbf{e}_{1}, \mathbf{e}_{2}\right)=\mathbb{R}^{2}
$$

$\mathbf{e}_{1}=r_{1} \mathbf{v}_{1}+r_{2} \mathbf{v}_{2} \Longleftrightarrow\left\{\begin{array}{l}2 r_{1}+r_{2}=1 \\ 5 r_{1}+3 r_{2}=0\end{array} \Longleftrightarrow\left\{\begin{array}{l}r_{1}=3 \\ r_{2}=-5\end{array}\right.\right.$
$\mathbf{e}_{2}=r_{1} \mathbf{v}_{1}+r_{2} \mathbf{v}_{2} \Longleftrightarrow\left\{\begin{array}{l}2 r_{1}+r_{2}=0 \\ 5 r_{1}+3 r_{2}=1\end{array} \Longleftrightarrow\left\{\begin{array}{l}r_{1}=-1 \\ r_{2}=2\end{array}\right.\right.$
Thus $\mathbf{e}_{1}=3 \mathbf{v}_{1}-5 \mathbf{v}_{2}$ and $\mathbf{e}_{2}=-\mathbf{v}_{1}+2 \mathbf{v}_{2}$.

