MATH 311-504 Topics in Applied Mathematics Lecture 2-4: Span (continued). Image and null-space.

Subspaces of vector spaces

Definition. A vector space V_0 is a **subspace** of a vector space V if $V_0 \subset V$ and the linear operations on V_0 agree with the linear operations on V.

Examples.

- $F(\mathbb{R})$: all functions $f : \mathbb{R} \to \mathbb{R}$
- $C(\mathbb{R})$: all continuous functions $f : \mathbb{R} \to \mathbb{R}$ $C(\mathbb{R})$ is a subspace of $F(\mathbb{R})$.
- \mathcal{P} : polynomials $p(x) = a_0 + a_1 x + \cdots + a_n x^n$
- \mathcal{P}_n : polynomials of degree at most n \mathcal{P}_n is a subspace of \mathcal{P} .

If S is a subset of a vector space V then S inherits from V addition and scalar multiplication. However S need not be closed under these operations.

Proposition A subset S of a vector space V is a subspace of V if and only if S is **nonempty** and **closed under linear operations**, i.e.,

$$\begin{array}{rcl} \mathbf{x},\mathbf{y}\in S \implies \mathbf{x}+\mathbf{y}\in S,\\ \mathbf{x}\in S \implies r\mathbf{x}\in S \ \ \text{for all} \ \ r\in \mathbb{R}. \end{array}$$

Remarks. The zero vector in a subspace is the same as the zero vector in V. Also, the subtraction in a subspace is the same as in V.

System of linear equations:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \dots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \end{cases}$$

Any solution (x_1, x_2, \ldots, x_n) is an element of \mathbb{R}^n .

Theorem The solution set of the system is a subspace of \mathbb{R}^n if and only if all equations in the system are homogeneous (all $b_i = 0$).

Let V be a vector space and $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n \in V$. Consider the set L of all linear combinations $r_1\mathbf{v}_1 + r_2\mathbf{v}_2 + \dots + r_n\mathbf{v}_n$, where $r_1, r_2, \dots, r_n \in \mathbb{R}$.

Theorem L is a subspace of V.

Definition. The subspace *L* is called the **span** of vectors $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n$ and denoted

$$\operatorname{Span}(\mathbf{v}_1,\mathbf{v}_2,\ldots,\mathbf{v}_n).$$

If $\operatorname{Span}(\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n) = V$, then the set $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ is called a **spanning set** for V.

Remark. Span($\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$) is the minimal subspace of V that contains $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$.

Examples. • $t\mathbf{x}$, a line through the origin in \mathbb{R}^n , is the span of one vector $\mathbf{x} \neq \mathbf{0}$.

• $t\mathbf{x} + s\mathbf{y}$, a plane through the origin in \mathbb{R}^n , is the span of two linearly independent vectors \mathbf{x} and \mathbf{y} .

 \mathcal{P} : polynomials $p(x) = a_0 + a_1 x + \cdots + a_n x^n$

• The span of $\{1, x, x^2\}$ is the space \mathcal{P}_2 of polynomials of degree at most 2.

- The span of $\{1, x 1, (x 1)^2\}$ is again \mathcal{P}_2 .
- The span of $\{1, x, x^2, \dots\}$ is the whole space \mathcal{P} .

• The span of $\{x, x^2, x^3, ...\}$ is the subspace of polynomials p(x) with a root at zero: p(0) = 0.

• The span of $\{1, x^2, x^4, ...\}$ is the subspace of *even* polynomials: p(-x) = p(x).

Examples of subspaces of $\mathcal{M}_{2,2}(\mathbb{R})$: $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$

- diagonal matrices: b = c = 0
- upper triangular matrices: c = 0
- lower triangular matrices: b = 0
- symmetric matrices $(A^T = A)$: b = c
- anti-symmetric matrices $(A^T = -A)$: a = d = 0 and c = -b
- matrices with zero trace: a + d = 0(trace = the sum of diagonal entries)

Examples of subspaces of $\mathcal{M}_{2,2}(\mathbb{R})$:

• The span of $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ and $\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$ consists of all matrices of the form

$$a \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + b \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}.$$

This is the subspace of diagonal matrices.

• The span of $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$, and $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ consists of all matrices of the form

$$a \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + b \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} + c \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} a & c \\ c & b \end{pmatrix}.$$

This is the subspace of symmetric matrices.

Examples of subspaces of $\mathcal{M}_{2,2}(\mathbb{R})$:

• The span of
$$\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$
 is the subspace of

anti-symmetric matrices.

• The span of
$$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$
, $\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$, and $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$

is the subspace of upper triangular matrices.

• The span of $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$ is the entire space $\mathcal{M}_{2,2}(\mathbb{R})$.

Image and null-space

Let V_1, V_2 be vector spaces and $f: V_1 \rightarrow V_2$ be a linear mapping.

- V_1 : the **domain** of f
- V_2 : the **range** of f

Definition. The **image** of f (denoted Im f) is the set of all vectors $\mathbf{y} \in V_2$ such that $\mathbf{y} = f(\mathbf{x})$ for some $\mathbf{x} \in V_1$. The **null-space** of f (denoted Null f) is the set of all vectors $\mathbf{x} \in V_1$ such that $f(\mathbf{x}) = \mathbf{0}$.

Theorem The image of f is a subspace of the range. The null-space of f is a subspace of the domain.

 $f: \mathbb{R}^n \to \mathbb{R}^m$, $f(\mathbf{x}) = A\mathbf{x}$, A an *m*-by-*n* matrix. **Theorem** Im f is spanned by columns of A. *Proof:* Let $\mathbf{x} = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n$. Then $\mathbf{x} = x_1 \mathbf{e}_1 + x_2 \mathbf{e}_2 + \cdots + x_n \mathbf{e}_n$ where $\mathbf{e}_1, \ldots, \mathbf{e}_n$ is the standard basis. $\implies f(\mathbf{x}) = x_1 f(\mathbf{e}_1) + x_2 f(\mathbf{e}_2) + \cdots + x_n f(\mathbf{e}_n).$ Hence the image of f is spanned by vectors $f(\mathbf{e}_1), f(\mathbf{e}_2), \ldots, f(\mathbf{e}_n)$, which are columns of A.

The null-space of f is the solution set of a system of linear equations, $A\mathbf{x} = \mathbf{0}$.

Proposition Null *f* is not changed when we apply elementary *row* operations to the matrix *A*.

Examples

•
$$f: \mathbb{R}^3 \to \mathbb{R}^3$$
, $f\begin{pmatrix} x\\ y\\ z \end{pmatrix} = \begin{pmatrix} 1 & 0 & -1\\ 1 & 2 & -1\\ 1 & 0 & -1 \end{pmatrix} \begin{pmatrix} x\\ y\\ z \end{pmatrix}$.

Im *f* is spanned by vectors (1, 1, 1), (0, 2, 0), and (-1, -1, -1). It follows that Im *f* is the plane t(1, 1, 1) + s(0, 1, 0).

To find $\operatorname{Null} f$, we convert A to reduced form:

 $\begin{pmatrix} 1 & 0 & -1 \\ 1 & 2 & -1 \\ 1 & 0 & -1 \end{pmatrix} \to \begin{pmatrix} 1 & 0 & -1 \\ 0 & 2 & 0 \\ 0 & 0 & 0 \end{pmatrix} \to \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ Hence $(x, y, z) \in \text{Null } f$ if x - z = y = 0. It follows that Null f is the line t(1, 0, 1).

•
$$f: \mathcal{M}_2(\mathbb{R}) \to \mathcal{M}_2(\mathbb{R}), \ f(A) = A + A^T.$$

 $f\begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 2a & b + c \\ b + c & 2d \end{pmatrix}.$

Null f is the subspace of anti-symmetric matrices, Im f is the subspace of symmetric matrices.

•
$$g: \mathcal{M}_2(\mathbb{R}) \to \mathcal{M}_2(\mathbb{R}), \ g(A) = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} A.$$

 $g\begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} c & d \\ 0 & 0 \end{pmatrix}.$

Im g is the subspace of matrices with the zero second row, Null g is the same as the image $\implies g(g(A)) = O$.

- \mathcal{P} : the space of polynomials.
- \mathcal{P}_n : the space of polynomials of degree at most n.

•
$$D: \mathcal{P} \to \mathcal{P}, \ (Dp)(x) = p'(x).$$

 $p(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \dots + a_n x^n$
 $\implies (Dp)(x) = a_1 + 2a_2 x + 3a_3 x^2 + \dots + na_n x^{n-1}$

The image of D is the entire \mathcal{P} , $\operatorname{Null} D = \mathcal{P}_0 =$ the subspace of constants.

•
$$D: \mathcal{P}_3 \to \mathcal{P}_3$$
, $(Dp)(x) = p'(x)$.
 $p(x) = ax^3 + bx^2 + cx + d \implies (Dp)(x) = 3ax^2 + 2bx + c$
The image of D is \mathcal{P}_2 , Null $D = \mathcal{P}_0$.