MATH 311-504
 Topics in Applied Mathematics

Lecture 2-4:
Span (continued).
Image and null-space.

Subspaces of vector spaces

Definition. A vector space V_{0} is a subspace of a vector space V if $V_{0} \subset V$ and the linear operations on V_{0} agree with the linear operations on V.

Examples.

- $F(\mathbb{R})$: all functions $f: \mathbb{R} \rightarrow \mathbb{R}$
- $C(\mathbb{R})$: all continuous functions $f: \mathbb{R} \rightarrow \mathbb{R}$
$C(\mathbb{R})$ is a subspace of $F(\mathbb{R})$.
- \mathcal{P} : polynomials $p(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n}$
- \mathcal{P}_{n} : polynomials of degree at most n
\mathcal{P}_{n} is a subspace of \mathcal{P}.

If S is a subset of a vector space V then S inherits from V addition and scalar multiplication. However S need not be closed under these operations.

Proposition A subset S of a vector space V is a subspace of V if and only if S is nonempty and closed under linear operations, i.e.,

$$
\begin{array}{r}
\mathbf{x}, \mathbf{y} \in S \quad \Longrightarrow \quad \mathbf{x}+\mathbf{y} \in S \\
\mathbf{x} \in S \Longrightarrow r \mathbf{x} \in S \text { for all } r \in \mathbb{R} .
\end{array}
$$

Remarks. The zero vector in a subspace is the same as the zero vector in V. Also, the subtraction in a subspace is the same as in V.

System of linear equations:

$$
\left\{\begin{array}{c}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}=b_{2} \\
\cdots \cdots+a_{m n} x_{n}=b_{m}
\end{array}\right.
$$

Any solution $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is an element of \mathbb{R}^{n}.
Theorem The solution set of the system is a subspace of \mathbb{R}^{n} if and only if all equations in the system are homogeneous (all $b_{i}=0$).

Let V be a vector space and $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n} \in V$.
Consider the set L of all linear combinations $r_{1} \mathbf{v}_{1}+r_{2} \mathbf{v}_{2}+\cdots+r_{n} \mathbf{v}_{n}$, where $r_{1}, r_{2}, \ldots, r_{n} \in \mathbb{R}$.

Theorem L is a subspace of V.
Definition. The subspace L is called the span of vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$ and denoted

$$
\operatorname{Span}\left(\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right) .
$$

If $\operatorname{Span}\left(\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right)=V$, then the set $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ is called a spanning set for V.

Remark. $\operatorname{Span}\left(\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right)$ is the minimal subspace of V that contains $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$.

Examples. - $t \mathbf{x}$, a line through the origin in \mathbb{R}^{n}, is the span of one vector $\mathbf{x} \neq \mathbf{0}$.

- $t \mathbf{x}+s \mathbf{y}$, a plane through the origin in \mathbb{R}^{n}, is the span of two linearly independent vectors \mathbf{x} and \mathbf{y}.
\mathcal{P} : polynomials $p(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n}$
- The span of $\left\{1, x, x^{2}\right\}$ is the space \mathcal{P}_{2} of polynomials of degree at most 2 .
- The span of $\left\{1, x-1,(x-1)^{2}\right\}$ is again \mathcal{P}_{2}.
- The span of $\left\{1, x, x^{2}, \ldots\right\}$ is the whole space \mathcal{P}.
- The span of $\left\{x, x^{2}, x^{3}, \ldots\right\}$ is the subspace of polynomials $p(x)$ with a root at zero: $p(0)=0$.
- The span of $\left\{1, x^{2}, x^{4}, \ldots\right\}$ is the subspace of even polynomials: $p(-x)=p(x)$.

Examples of subspaces of $\mathcal{M}_{2,2}(\mathbb{R}): \quad A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$

- diagonal matrices: $b=c=0$
- upper triangular matrices: $c=0$
- lower triangular matrices: $b=0$
- symmetric matrices $\left(A^{T}=A\right): \quad b=c$
- anti-symmetric matrices $\left(A^{T}=-A\right)$:
$a=d=0$ and $c=-b$
- matrices with zero trace: $a+d=0$
(trace $=$ the sum of diagonal entries)

Examples of subspaces of $\mathcal{M}_{2,2}(\mathbb{R})$:

- The span of $\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$ and $\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)$ consists of all matrices of the form

$$
a\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)+b\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)=\left(\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right) .
$$

This is the subspace of diagonal matrices.

- The span of $\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)$, and $\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$ consists of all matrices of the form

$$
a\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)+b\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)+c\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)=\left(\begin{array}{ll}
a & c \\
c & b
\end{array}\right) .
$$

This is the subspace of symmetric matrices.

Examples of subspaces of $\mathcal{M}_{2,2}(\mathbb{R})$:

- The span of $\left(\begin{array}{rr}0 & -1 \\ 1 & 0\end{array}\right)$ is the subspace of anti-symmetric matrices.
- The span of $\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)$, and $\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$
is the subspace of upper triangular matrices.
- The span of $\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)$
is the entire space $\mathcal{M}_{2,2}(\mathbb{R})$.

Image and null-space

Let V_{1}, V_{2} be vector spaces and $f: V_{1} \rightarrow V_{2}$ be a linear mapping.
V_{1} : the domain of f
V_{2} : the range of f
Definition. The image of $f($ denoted $\operatorname{Im} f)$ is the set of all vectors $\mathbf{y} \in V_{2}$ such that $\mathbf{y}=f(\mathbf{x})$ for some $\mathbf{x} \in V_{1}$. The null-space of f (denoted Null f) is the set of all vectors $\mathbf{x} \in V_{1}$ such that $f(\mathbf{x})=\mathbf{0}$.
Theorem The image of f is a subspace of the range. The null-space of f is a subspace of the domain.
$f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}, \quad f(\mathbf{x})=A \mathbf{x}, \quad A$ an m-by- n matrix.
Theorem $\operatorname{Im} f$ is spanned by columns of A.
Proof: Let $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$. Then

$$
\mathbf{x}=x_{1} \mathbf{e}_{1}+x_{2} \mathbf{e}_{2}+\cdots+x_{n} \mathbf{e}_{n},
$$

where $\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}$ is the standard basis.

$$
\Longrightarrow f(\mathbf{x})=x_{1} f\left(\mathbf{e}_{1}\right)+x_{2} f\left(\mathbf{e}_{2}\right)+\cdots+x_{n} f\left(\mathbf{e}_{n}\right) .
$$

Hence the image of f is spanned by vectors $f\left(\mathbf{e}_{1}\right), f\left(\mathbf{e}_{2}\right), \ldots, f\left(\mathbf{e}_{n}\right)$, which are columns of A.

The null-space of f is the solution set of a system of linear equations, $A \mathbf{x}=\mathbf{0}$.

Proposition Null f is not changed when we apply elementary row operations to the matrix A.

Examples

- $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}, f\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{ccc}1 & 0 & -1 \\ 1 & 2 & -1 \\ 1 & 0 & -1\end{array}\right)\left(\begin{array}{l}x \\ y \\ z\end{array}\right)$.
$\operatorname{Im} f$ is spanned by vectors $(1,1,1),(0,2,0)$, and $(-1,-1,-1)$. It follows that $\operatorname{Im} f$ is the plane $t(1,1,1)+s(0,1,0)$.
To find Null f, we convert A to reduced form:

$$
\left(\begin{array}{rrr}
1 & 0 & -1 \\
1 & 2 & -1 \\
1 & 0 & -1
\end{array}\right) \rightarrow\left(\begin{array}{rrr}
1 & 0 & -1 \\
0 & 2 & 0 \\
0 & 0 & 0
\end{array}\right) \rightarrow\left(\begin{array}{rrr}
1 & 0 & -1 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

Hence $(x, y, z) \in \operatorname{Null} f$ if $x-z=y=0$.
It follows that Null f is the line $t(1,0,1)$.

- $f: \mathcal{M}_{2}(\mathbb{R}) \rightarrow \mathcal{M}_{2}(\mathbb{R}), \quad f(A)=A+A^{T}$.
$f\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)=\left(\begin{array}{cc}2 a & b+c \\ b+c & 2 d\end{array}\right)$.
Null f is the subspace of anti-symmetric matrices, $\operatorname{Im} f$ is the subspace of symmetric matrices.
- $g: \mathcal{M}_{2}(\mathbb{R}) \rightarrow \mathcal{M}_{2}(\mathbb{R}), \quad g(A)=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right) A$.
$g\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)=\left(\begin{array}{ll}c & d \\ 0 & 0\end{array}\right)$.
Im g is the subspace of matrices with the zero second row, Null g is the same as the image
$\Longrightarrow g(g(A))=0$.
\mathcal{P} : the space of polynomials.
\mathcal{P}_{n} : the space of polynomials of degree at most n.
- $D: \mathcal{P} \rightarrow \mathcal{P},(D p)(x)=p^{\prime}(x)$.
$p(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\cdots+a_{n} x^{n}$
$\Longrightarrow(D p)(x)=a_{1}+2 a_{2} x+3 a_{3} x^{2}+\cdots+n a_{n} x^{n-1}$
The image of D is the entire \mathcal{P}, Null $D=\mathcal{P}_{0}=$ the subspace of constants.
- $D: \mathcal{P}_{3} \rightarrow \mathcal{P}_{3}, \quad(D p)(x)=p^{\prime}(x)$.
$p(x)=a x^{3}+b x^{2}+c x+d \Longrightarrow(D p)(x)=3 a x^{2}+2 b x+c$
The image of D is \mathcal{P}_{2}, Null $D=\mathcal{P}_{0}$.

