MATH 311-504 Topics in Applied Mathematics Lecture 2-5: Image and null-space (continued). General linear equations.

Image and null-space

Let V_1, V_2 be vector spaces and $f: V_1 \rightarrow V_2$ be a linear mapping.

- V_1 : the **domain** of f
- V_2 : the **range** of f

Definition. The **image** of f (denoted Im f) is the set of all vectors $\mathbf{y} \in V_2$ such that $\mathbf{y} = f(\mathbf{x})$ for some $\mathbf{x} \in V_1$. The **null-space** of f (denoted Null f) is the set of all vectors $\mathbf{x} \in V_1$ such that $f(\mathbf{x}) = \mathbf{0}$.

Theorem The image of f is a subspace of the range. The null-space of f is a subspace of the domain.

More examples

•
$$M: \mathcal{P} \to \mathcal{P}, \quad (Mp)(x) = xp(x).$$

 $p(x) = a_0 + a_1x + \dots + a_nx^n$
 $\Longrightarrow \quad (Mp)(x) = a_0x + a_1x^2 + \dots + a_nx^{n+1}$
Null $M = \{0\}, \quad \text{Im } M = \{p(x) \in \mathcal{P} : p(0) = 0\}.$

•
$$I: \mathcal{P} \to \mathcal{P}, \ (Ip)(x) = \int_0^x p(s) \, ds.$$

 $p(x) = a_0 + a_1 x + \dots + a_n x^n$

$$\implies (Ip)(x) = a_0 x + \frac{1}{2}a_1 x^2 + \dots + \frac{1}{n+1}a_n x^{n+1}$$

Null $I = \{0\}$, Im $I = \{p(x) \in \mathcal{P} : p(0) = 0\}$.

General linear equations

Definition. A linear equation is an equation of the form $L(\mathbf{x}) = \mathbf{b},$

where $L: V \to W$ is a linear mapping, **b** is a given vector from W, and **x** is an unknown vector from V.

The image of *L* is the set of all vectors $\mathbf{b} \in W$ such that the equation $L(\mathbf{x}) = \mathbf{b}$ has a solution.

The null-space of *L* is the solution set of the **homogeneous** linear equation $L(\mathbf{x}) = \mathbf{0}$.

Theorem If the linear equation $L(\mathbf{x}) = \mathbf{b}$ is solvable then the general solution is

$$\mathbf{x}_0 + t_1 \mathbf{v}_1 + \cdots + t_k \mathbf{v}_k$$
,

where \mathbf{x}_0 is a particular solution, $\mathbf{v}_1, \ldots, \mathbf{v}_k$ is a spanning set for the null-space of L, and t_1, \ldots, t_k are arbitrary scalars.

Theorem If the linear equation $L(\mathbf{x}) = \mathbf{b}$ is solvable then the general solution is

$$\mathbf{x}_0 + t_1 \mathbf{v}_1 + \cdots + t_k \mathbf{v}_k,$$

where \mathbf{x}_0 is a particular solution, $\mathbf{v}_1, \ldots, \mathbf{v}_k$ is a spanning for the null-space of L, and t_1, \ldots, t_k are arbitrary scalars.

Proof: Let
$$\mathbf{x} = \mathbf{x}_0 + t_1\mathbf{v}_1 + \cdots + t_k\mathbf{v}_k$$
. Then
 $L(\mathbf{x}) = L(\mathbf{x}_0) + t_1L(\mathbf{v}_1) + \cdots + t_kL(\mathbf{v}_k) = \mathbf{b}$.

Conversely, if $L(\mathbf{x}) = \mathbf{b}$ then

$$L(\mathbf{x}-\mathbf{x}_0)=L(\mathbf{x})-L(\mathbf{x}_0)=\mathbf{b}-\mathbf{b}=\mathbf{0}.$$

Hence $\mathbf{x} - \mathbf{x}_0$ belongs to Null *L*. It follows that $\mathbf{x} - \mathbf{x}_0 = t_1 \mathbf{v}_1 + \cdots + t_k \mathbf{v}_k$ for some $t_1, \ldots, t_k \in \mathbb{R}$.

Example.
$$\begin{cases} x + y + z = 4, \\ x + 2y = 3. \end{cases}$$

 $L : \mathbb{R}^3 \to \mathbb{R}^2, \quad L \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}.$
Linear equation: $L(\mathbf{x}) = \mathbf{b}$, where $\mathbf{b} = \begin{pmatrix} 4 \\ 3 \end{pmatrix}.$
 $\begin{pmatrix} 1 & 1 & 1 & | & 4 \\ 1 & 2 & 0 & | & 3 \end{pmatrix} \to \begin{pmatrix} 1 & 1 & 1 & | & 4 \\ 0 & 1 & -1 & | & -1 \end{pmatrix} \to \begin{pmatrix} 1 & 0 & 2 & | & 5 \\ 0 & 1 & -1 & | & -1 \end{pmatrix}$
 $\begin{cases} x + 2z = 5 \\ y - z = -1 \end{cases} \iff \begin{cases} x = 5 - 2z \\ y = -1 + z \end{cases}$
 $(x, y, z) = (5 - 2t, -1 + t, t) = (5, -1, 0) + t(-2, 1, 1).$

Example. $u''(x) + u(x) = e^{2x}$.

Linear operator $L: C^2(\mathbb{R}) \to C(\mathbb{R}), Lu = u'' + u$. Linear equation: Lu = b, where $b(x) = e^{2x}$.

It can be shown that the image of L is the entire space $C(\mathbb{R})$ while the null-space of L is spanned by the functions $\sin x$ and $\cos x$.

Observe that

$$(Lb)(x) = b''(x) + b(x) = 4e^{2x} + e^{2x} = 5e^{2x} = 5b(x).$$

By linearity, $u_0 = \frac{1}{5}b$ is a particular solution.

Thus the general solution is

$$u(x) = \frac{1}{5}e^{2x} + t_1\sin x + t_2\cos x.$$

Let V_1, V_2 be vector spaces and $f: V_1 \rightarrow V_2$ be a linear mapping.

Definition. The map f is **one-to-one** if it maps different vectors from V_1 to different vectors in V_2 . That is, for any $\mathbf{x}, \mathbf{y} \in V_1$ we have that

$$\mathbf{x} \neq \mathbf{y} \implies f(\mathbf{x}) \neq f(\mathbf{y}).$$

Theorem A linear mapping f is one-to-one if and only if Null $f = \{\mathbf{0}\}$.

Proof: If a vector $\mathbf{x} \neq \mathbf{0}_1$ belongs to Null f, then $f(\mathbf{x}) = \mathbf{0}_2 = f(\mathbf{0}_1) \implies f$ is not one-to-one. On the other hand, if Null f is trivial then $\mathbf{x} \neq \mathbf{y} \implies \mathbf{x} - \mathbf{y} \neq \mathbf{0} \implies f(\mathbf{x} - \mathbf{y}) \neq \mathbf{0} \implies f(\mathbf{x}) - f(\mathbf{y}) \neq \mathbf{0} \implies f(\mathbf{x}) \neq f(\mathbf{y}).$ Let $f: V_1 \rightarrow V_2$ be a linear mapping.

Definition. The map f is **onto** if any vector from V_2 is the image under f of some vector from V_1 . That is, if $\text{Im } f = V_2$.

If the mapping f is both one-to-one and onto, then any $\mathbf{y} \in V_2$ is uniquely represented as $f(\mathbf{x})$, where $\mathbf{x} \in V_1$. In this case, we define the **inverse mapping** f^{-1} by $f^{-1}(\mathbf{y}) = \mathbf{x} \iff f(\mathbf{x}) = \mathbf{y}$.

If the mapping f is only one-to-one, we can still define the inverse mapping f^{-1} : Im $f \to V_1$.

Theorem The inverse of a linear mapping is also linear.

Examples. • $f : \mathbb{R}^2 \to \mathbb{R}^3$, f(x, y) = (x, y, x). Null $f = \{\mathbf{0}\}$, Im f is the plane x = z. The inverse mapping $f^{-1} : \text{Im } f \to \mathbb{R}^2$ is given by $(x, y, z) \mapsto (x, y)$.

•
$$g: \mathbb{R}^2 \to \mathbb{R}^2$$
, $g(\mathbf{x}) = A\mathbf{x}$, where $A = \begin{pmatrix} 1 & 2 \\ 1 & 3 \end{pmatrix}$

det $A = 1 \implies A$ is invertible.

g is one-to-one since

$$A\mathbf{x} = \mathbf{0} \implies \mathbf{x} = A^{-1}(A\mathbf{x}) = A^{-1}\mathbf{0} = \mathbf{0}.$$

g is onto since $\mathbf{y} = A(A^{-1}\mathbf{y})$ for any $\mathbf{y} \in \mathbb{R}^2$. The inverse mapping is given by $g^{-1}(\mathbf{y}) = A^{-1}\mathbf{y}$.