MATH 311-504
 Topics in Applied Mathematics

Lecture 2-5:
 Image and null-space (continued). General linear equations.

Image and null-space

Let V_{1}, V_{2} be vector spaces and $f: V_{1} \rightarrow V_{2}$ be a linear mapping.
V_{1} : the domain of f
V_{2} : the range of f
Definition. The image of $f($ denoted $\operatorname{Im} f)$ is the set of all vectors $\mathbf{y} \in V_{2}$ such that $\mathbf{y}=f(\mathbf{x})$ for some $\mathbf{x} \in V_{1}$. The null-space of f (denoted Null f) is the set of all vectors $\mathbf{x} \in V_{1}$ such that $f(\mathbf{x})=\mathbf{0}$.
Theorem The image of f is a subspace of the range. The null-space of f is a subspace of the domain.

More examples

- $M: \mathcal{P} \rightarrow \mathcal{P},(M p)(x)=x p(x)$.
$p(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n}$
$\Longrightarrow(M p)(x)=a_{0} x+a_{1} x^{2}+\cdots+a_{n} x^{n+1}$
Null $M=\{0\}, \quad \operatorname{Im} M=\{p(x) \in \mathcal{P}: p(0)=0\}$.
- I: $\mathcal{P} \rightarrow \mathcal{P}, \quad(I p)(x)=\int_{0}^{x} p(s) d s$.
$p(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n}$
$\Longrightarrow(I p)(x)=a_{0} x+\frac{1}{2} a_{1} x^{2}+\cdots+\frac{1}{n+1} a_{n} x^{n+1}$
Null $I=\{0\}, \quad \operatorname{Im} I=\{p(x) \in \mathcal{P}: p(0)=0\}$.

General linear equations

Definition. A linear equation is an equation of the form

$$
L(\mathbf{x})=\mathbf{b}
$$

where $L: V \rightarrow W$ is a linear mapping, \mathbf{b} is a given vector from W, and \mathbf{x} is an unknown vector from V.

The image of L is the set of all vectors $\mathbf{b} \in W$ such that the equation $L(\mathbf{x})=\mathbf{b}$ has a solution.
The null-space of L is the solution set of the homogeneous linear equation $L(\mathbf{x})=\mathbf{0}$.

Theorem If the linear equation $L(\mathbf{x})=\mathbf{b}$ is solvable then the general solution is

$$
\mathbf{x}_{0}+t_{1} \mathbf{v}_{1}+\cdots+t_{k} \mathbf{v}_{k}
$$

where \mathbf{x}_{0} is a particular solution, $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ is a spanning set for the null-space of L, and t_{1}, \ldots, t_{k} are arbitrary scalars.

Theorem If the linear equation $L(\mathbf{x})=\mathbf{b}$ is solvable then the general solution is

$$
\mathbf{x}_{0}+t_{1} \mathbf{v}_{1}+\cdots+t_{k} \mathbf{v}_{k}
$$

where \mathbf{x}_{0} is a particular solution, $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ is a spanning for the null-space of L, and t_{1}, \ldots, t_{k} are arbitrary scalars.

Proof: Let $\mathbf{x}=\mathbf{x}_{0}+t_{1} \mathbf{v}_{1}+\cdots+t_{k} \mathbf{v}_{k}$. Then

$$
L(\mathbf{x})=L\left(\mathbf{x}_{0}\right)+t_{1} L\left(\mathbf{v}_{1}\right)+\cdots+t_{k} L\left(\mathbf{v}_{k}\right)=\mathbf{b}
$$

Conversely, if $L(\mathbf{x})=\mathbf{b}$ then

$$
L\left(\mathbf{x}-\mathbf{x}_{0}\right)=L(\mathbf{x})-L\left(\mathbf{x}_{0}\right)=\mathbf{b}-\mathbf{b}=\mathbf{0}
$$

Hence $\mathbf{x}-\mathbf{x}_{0}$ belongs to Null L. It follows that $\mathbf{x}-\mathbf{x}_{0}=t_{1} \mathbf{v}_{1}+\cdots+t_{k} \mathbf{v}_{k}$ for some $t_{1}, \ldots, t_{k} \in \mathbb{R}$.

Example. $\left\{\begin{array}{l}x+y+z=4, \\ x+2 y=3 .\end{array}\right.$
$L: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}, \quad L\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{lll}1 & 1 & 1 \\ 1 & 2 & 0\end{array}\right)\left(\begin{array}{l}x \\ y \\ z\end{array}\right)$.
Linear equation: $L(\mathbf{x})=\mathbf{b}$, where $\mathbf{b}=\binom{4}{3}$.

$$
\begin{gathered}
\left(\begin{array}{lll|l}
1 & 1 & 1 & 4 \\
1 & 2 & 0 & 3
\end{array}\right) \rightarrow\left(\begin{array}{rrr|r}
1 & 1 & 1 & 4 \\
0 & 1 & -1 & -1
\end{array}\right) \rightarrow\left(\begin{array}{rrr|r}
1 & 0 & 2 & 5 \\
0 & 1 & -1 & -1
\end{array}\right) \\
\left\{\begin{array} { l }
{ x + 2 z = 5 } \\
{ y - z = - 1 }
\end{array} \Longleftrightarrow \left\{\begin{array}{l}
x=5-2 z \\
y=-1+z
\end{array}\right.\right.
\end{gathered}
$$

$$
(x, y, z)=(5-2 t,-1+t, t)=(5,-1,0)+t(-2,1,1)
$$

Example. $u^{\prime \prime}(x)+u(x)=e^{2 x}$.
Linear operator $L: C^{2}(\mathbb{R}) \rightarrow C(\mathbb{R}), \quad L u=u^{\prime \prime}+u$. Linear equation: $L u=b$, where $b(x)=e^{2 x}$.
It can be shown that the image of L is the entire space $C(\mathbb{R})$ while the null-space of L is spanned by the functions $\sin x$ and $\cos x$.

Observe that
$(L b)(x)=b^{\prime \prime}(x)+b(x)=4 e^{2 x}+e^{2 x}=5 e^{2 x}=5 b(x)$.
By linearity, $u_{0}=\frac{1}{5} b$ is a particular solution.
Thus the general solution is

$$
u(x)=\frac{1}{5} e^{2 x}+t_{1} \sin x+t_{2} \cos x
$$

Let V_{1}, V_{2} be vector spaces and $f: V_{1} \rightarrow V_{2}$ be a linear mapping.
Definition. The map f is one-to-one if it maps different vectors from V_{1} to different vectors in V_{2}.
That is, for any $\mathbf{x}, \mathbf{y} \in V_{1}$ we have that

$$
\mathbf{x} \neq \mathbf{y} \Longrightarrow f(\mathbf{x}) \neq f(\mathbf{y})
$$

Theorem A linear mapping f is one-to-one if and only if Null $f=\{\mathbf{0}\}$.
Proof: If a vector $\mathbf{x} \neq \mathbf{0}_{1}$ belongs to Null f, then $f(\mathbf{x})=\mathbf{0}_{2}=f\left(\mathbf{0}_{1}\right) \Longrightarrow f$ is not one-to-one.
On the other hand, if Null f is trivial then

$$
\begin{aligned}
\mathbf{x} \neq \mathbf{y} \Longrightarrow \mathbf{x}-\mathbf{y} \neq \mathbf{0} & \Longrightarrow f(\mathbf{x}-\mathbf{y}) \neq \mathbf{0} \\
\Longrightarrow f(\mathbf{x})-f(\mathbf{y}) \neq \mathbf{0} & \Longrightarrow f(\mathbf{x}) \neq f(\mathbf{y}) .
\end{aligned}
$$

Let $f: V_{1} \rightarrow V_{2}$ be a linear mapping.
Definition. The map f is onto if any vector from V_{2} is the image under f of some vector from V_{1}. That is, if $\operatorname{Im} f=V_{2}$.

If the mapping f is both one-to-one and onto, then any $\mathbf{y} \in V_{2}$ is uniquely represented as $f(\mathbf{x})$, where $x \in V_{1}$. In this case, we define the inverse mapping f^{-1} by $f^{-1}(\mathbf{y})=\mathbf{x} \Longleftrightarrow f(\mathbf{x})=\mathbf{y}$.

If the mapping f is only one-to-one, we can still define the inverse mapping $f^{-1}: \operatorname{Im} f \rightarrow V_{1}$.

Theorem The inverse of a linear mapping is also linear.

Examples. - $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}, f(x, y)=(x, y, x)$.
Null $f=\{\mathbf{0}\}, \operatorname{Im} f$ is the plane $x=z$.
The inverse mapping $f^{-1}: \operatorname{Im} f \rightarrow \mathbb{R}^{2}$ is given by $(x, y, z) \mapsto(x, y)$.

- $g: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, g(\mathbf{x})=A \mathbf{x}$, where $A=\left(\begin{array}{ll}1 & 2 \\ 1 & 3\end{array}\right)$. $\operatorname{det} A=1 \Longrightarrow A$ is invertible.
g is one-to-one since

$$
A \mathbf{x}=\mathbf{0} \Longrightarrow \mathbf{x}=A^{-1}(A \mathbf{x})=A^{-1} \mathbf{0}=\mathbf{0}
$$

g is onto since $\mathbf{y}=A\left(A^{-1} \mathbf{y}\right)$ for any $\mathbf{y} \in \mathbb{R}^{2}$.
The inverse mapping is given by $g^{-1}(\mathbf{y})=A^{-1} \mathbf{y}$.

