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Lecture 2-6:

Isomorphism.
Linear independence (revisited).



Definition. A mapping f : V1 → V2 is one-to-one
if it maps different elements from V1 to different

elements in V2. The map f is onto if any element
y ∈ V2 is represented as f (x) for some x ∈ V1.

If the mapping f is both one-to-one and onto,
then the inverse f −1 : V2 → V1 is well defined.

Now let V1, V2 be vector spaces and f : V1 → V2

be a linear mapping.

Theorem (i) The linear mapping f is one-to-one if

and only if Null f = {0}.
(ii) The linear mapping f is onto if Im f = V2.
(iii) If the linear mapping f is both one-to-one and

onto, then the inverse mapping f −1 is also linear.



Examples

• f : R
2 → R

3, f (x , y) = (x , y , x).

Null f = {0}, Im f is the plane x = z .

The inverse mapping f −1 : Im f → R
2 is given by

(x , y , z) 7→ (x , y).

• g : R
2 → R

2, g(x) = Ax, where A =

(

1 2
1 3

)

.

g is one-to-one and onto.

The inverse mapping is given by g−1(y) = A−1y.



• L : P → P, (Lp)(x) = p(x + 1).

L is one-to-one and onto.
The inverse is given by (L−1p)(x) = p(x − 1).

• M : P → P, (Mp)(x) = xp(x).

NullM = {0}, Im M = {p(x) ∈ P : p(0) = 0}.

The inverse mapping M−1 : Im M → P is given by
(M−1p)(x) = x−1p(x).

• I : P → P, (Ip)(x) =

∫

x

0

p(s) ds.

Null I = {0}, Im I = {p(x) ∈ P : p(0) = 0}.

The inverse mapping I−1 : Im I → P is given by

(I−1p)(x) = p′(x).



Isomorphism

Definition. A linear mapping f : V1 → V2 is called

an isomorphism of vector spaces if it is both
one-to-one and onto.

Two vector spaces V1 and V2 are called isomorphic

if there exists an isomorphism f : V1 → V2.

The word “isomorphism” applies when two complex

structures can be mapped onto each other, in such

a way that to each part of one structure there is a

corresponding part in the other structure, where

“corresponding” means that the two parts play

similar roles in their respective structures.



Examples of isomorphisms

• M2,2(R) is isomorphic to R
4.

Isomorphism:

(

a b

c d

)

7→ (a, b, c , d).

• M2,3(R) is isomorphic to M3,2(R).

Isomorphism:

(

a1 a2 a3

b1 b2 b3

)

7→





a1 b1

a2 b2

a3 b3



.

• The plane z = 0 in R
3 is isomorphic to R

2.

Isomorphism: (x , y , 0) 7→ (x , y).

• Pn is isomorphic to R
n+1.

Isomorphism: a0+a1x+ · · ·+anx
n 7→ (a0, a1, . . . , an).



Classification problems of linear algebra

Problem 1 Given vector spaces V1 and V2,

determine whether they are isomorphic or not.

Problem 2 Given a vector space V , determine
whether V is isomorphic to R

n for some n ≥ 1.

Problem 3 Show that vector spaces R
n and R

m

are not isomorphic if m 6= n.



Linear independence

Definition. Let V be a vector space. Vectors
v1, v2, . . . , vk ∈ V are called linearly dependent if they
satisfy a relation

r1v1 + r2v2 + · · · + rkvk = 0,

where the coefficients r1, . . . , rk ∈ R are not all equal to zero.
Otherwise the vectors v1, v2, . . . , vk are called linearly
independent. That is, if

r1v1+r2v2+ · · ·+rkvk = 0 =⇒ r1 = · · · = rk = 0.

An infinite set S ⊂ V is linearly dependent if there are
some linearly dependent vectors v1, . . . , vk ∈ S . Otherwise S

is linearly independent.

Theorem Vectors v1, . . . , vk ∈ V are linearly dependent if
and only if one of them is a linear combination of the other
k − 1 vectors.



Examples of linear independence

• Vectors e1 = (1, 0, 0), e2 = (0, 1, 0), and
e3 = (0, 0, 1) in R

3.

xe1 + ye2 + ze3 = 0 =⇒ (x , y , z) = 0
=⇒ x = y = z = 0

• Matrices E11 =

(

1 0
0 0

)

, E12 =

(

0 1
0 0

)

,

E21 =

(

0 0

1 0

)

, and E22 =

(

0 0

0 1

)

.

aE11 + bE12 + cE21 + dE22 = O =⇒

(

a b

c d

)

= O

=⇒ a = b = c = d = 0



Examples of linear independence

• Polynomials 1, x , x2
, . . . , xn.

a0 + a1x + a2x
2 + · · ·+ anx

n = 0 identically
=⇒ ai = 0 for 0 ≤ i ≤ n

• The infinite set {1, x , x2
, . . . , xn

, . . . }.

• Polynomials p1(x) = 1, p2(x) = x − 1, and

p3(x) = (x − 1)2.

a1p1(x) + a2p2(x) + a3p3(x) = a1 + a2(x − 1) + a3(x − 1)2 =
= (a1 − a2 + a3) + (a2 − 2a3)x + a3x

2.

Hence a1p1(x) + a2p2(x) + a3p3(x) = 0 identically
=⇒ a1 − a2 + a3 = a2 − 2a3 = a3 = 0
=⇒ a1 = a2 = a3 = 0



Problem 1. Show that functions 1, ex , and e−x

are linearly independent in F (R).

Proof: Suppose that a + bex + ce−x = 0 for some
a, b, c ∈ R. We have to show that a = b = c = 0.

x = 0 =⇒ a + b + c = 0
x = 1 =⇒ a + be + ce−1 = 0

x = −1 =⇒ a + be−1 + ce = 0

The matrix of the system is A =





1 1 1
1 e e−1

1 e−1 e



.

det A = e2 − e−2 − 2e + 2e−1 =

= (e − e−1)(e + e−1) − 2(e − e−1) =
= (e−e−1)(e+e−1−2) = (e−e−1)(e1/2−e−1/2)2 6= 0.

Hence the system has a unique solution a = b = c = 0.



Problem 2. Show that functions ex , e2x , and e3x

are linearly independent in C∞(R).

Suppose that aex + be2x + ce3x = 0 for all x ∈ R,
where a, b, c are constants. We have to show that
a = b = c = 0.

Differentiate this identity twice:

aex + 2be2x + 3ce3x = 0,

aex + 4be2x + 9ce3x = 0.

It follows that Av = 0, where

A =





1 1 1
1 2 3
1 4 9



, v =





aex

be2x

ce3x



.



A =





1 1 1

1 2 3
1 4 9



, v =





aex

be2x

ce3x



.

To compute det A, subtract the 1st row from the

2nd and the 3rd rows:
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= 2.

Since A is invertible, we obtain

Av = 0 =⇒ v = 0 =⇒ aex = be2x = ce3x = 0

=⇒ a = b = c = 0



Problem 3. Show that functions x , ex , and e−x

are linearly independent in C (R).

Suppose that ax + bex + ce−x = 0 for all x ∈ R, where
a, b, c are constants. We have to show that a = b = c = 0.

Divide both sides of the identity by ex :

axe−x + b + ce−2x = 0.

The left-hand side approaches b as x → +∞. =⇒ b = 0

Now ax + ce−x = 0 for all x ∈ R. For any x 6= 0 divide
both sides of the identity by x :

a + cx−1e−x = 0.

The left-hand side approaches a as x → +∞. =⇒ a = 0

Now ce−x = 0 =⇒ c = 0.


