MATH 311-504 Topics in Applied Mathematics Lecture 2-6: Isomorphism. Linear independence (revisited).

Definition. A mapping $f : V_1 \rightarrow V_2$ is **one-to-one** if it maps different elements from V_1 to different elements in V_2 . The map f is **onto** if any element $y \in V_2$ is represented as f(x) for some $x \in V_1$.

If the mapping f is both one-to-one and onto, then the inverse $f^{-1}: V_2 \rightarrow V_1$ is well defined.

Now let V_1, V_2 be vector spaces and $f: V_1 \rightarrow V_2$ be a linear mapping.

Theorem (i) The linear mapping f is one-to-one if and only if $\operatorname{Null} f = \{\mathbf{0}\}$.

(ii) The linear mapping f is onto if $\text{Im } f = V_2$. (iii) If the linear mapping f is both one-to-one and onto, then the inverse mapping f^{-1} is also linear.

Examples

•
$$f : \mathbb{R}^2 \to \mathbb{R}^3$$
, $f(x, y) = (x, y, x)$.
Null $f = \{\mathbf{0}\}$, Im f is the plane $x = z$.
The inverse mapping $f^{-1} : \text{Im } f \to \mathbb{R}^2$ is given by $(x, y, z) \mapsto (x, y)$.

•
$$g: \mathbb{R}^2 \to \mathbb{R}^2$$
, $g(\mathbf{x}) = A\mathbf{x}$, where $A = \begin{pmatrix} 1 & 2 \\ 1 & 3 \end{pmatrix}$.

g is one-to-one and onto. The inverse mapping is given by $g^{-1}(\mathbf{y}) = A^{-1}\mathbf{y}$.

• $L: \mathcal{P} \to \mathcal{P}$, (Lp)(x) = p(x+1). L is one-to-one and onto. The inverse is given by $(L^{-1}p)(x) = p(x-1)$. • $M: \mathcal{P} \to \mathcal{P}$, (Mp)(x) = xp(x). Null $M = \{0\}$, Im $M = \{p(x) \in \mathcal{P} : p(0) = 0\}$. The inverse mapping M^{-1} : Im $M \to \mathcal{P}$ is given by $(M^{-1}p)(x) = x^{-1}p(x).$

•
$$I: \mathcal{P} \to \mathcal{P}, \ (Ip)(x) = \int_0^x p(s) \, ds.$$

Null $I = \{\mathbf{0}\}, \ \operatorname{Im} I = \{p(x) \in \mathcal{P} : p(0) = 0\}.$
The inverse mapping $I^{-1}: \operatorname{Im} I \to \mathcal{P}$ is given by $(I^{-1}p)(x) = p'(x).$

Isomorphism

Definition. A linear mapping $f: V_1 \rightarrow V_2$ is called an **isomorphism** of vector spaces if it is both one-to-one and onto.

Two vector spaces V_1 and V_2 are called **isomorphic** if there exists an isomorphism $f : V_1 \rightarrow V_2$.

The word "isomorphism" applies when two complex structures can be mapped onto each other, in such a way that to each part of one structure there is a corresponding part in the other structure, where "corresponding" means that the two parts play similar roles in their respective structures.

Examples of isomorphisms

•
$$\mathcal{M}_{2,2}(\mathbb{R})$$
 is isomorphic to \mathbb{R}^4 .
Isomorphism: $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \mapsto (a, b, c, d)$.

• $\mathcal{M}_{2,3}(\mathbb{R})$ is isomorphic to $\mathcal{M}_{3,2}(\mathbb{R})$. Isomorphism: $\begin{pmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{pmatrix} \mapsto \begin{pmatrix} a_1 & b_1 \\ a_2 & b_2 \\ a_3 & b_3 \end{pmatrix}$.

• The plane z = 0 in \mathbb{R}^3 is isomorphic to \mathbb{R}^2 . Isomorphism: $(x, y, 0) \mapsto (x, y)$.

• \mathcal{P}_n is isomorphic to \mathbb{R}^{n+1} . Isomorphism: $a_0+a_1x+\cdots+a_nx^n\mapsto (a_0,a_1,\ldots,a_n)$. Classification problems of linear algebra

Problem 1 Given vector spaces V_1 and V_2 , determine whether they are isomorphic or not.

Problem 2 Given a vector space *V*, determine whether *V* is isomorphic to \mathbb{R}^n for some $n \ge 1$.

Problem 3 Show that vector spaces \mathbb{R}^n and \mathbb{R}^m are not isomorphic if $m \neq n$.

Linear independence

Definition. Let V be a vector space. Vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k \in V$ are called **linearly dependent** if they satisfy a relation

 $r_1\mathbf{v}_1+r_2\mathbf{v}_2+\cdots+r_k\mathbf{v}_k=\mathbf{0},$

where the coefficients $r_1, \ldots, r_k \in \mathbb{R}$ are not all equal to zero. Otherwise the vectors $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_k$ are called **linearly independent**. That is, if

$$r_1\mathbf{v}_1+r_2\mathbf{v}_2+\cdots+r_k\mathbf{v}_k=\mathbf{0} \implies r_1=\cdots=r_k=\mathbf{0}.$$

An infinite set $S \subset V$ is **linearly dependent** if there are some linearly dependent vectors $\mathbf{v}_1, \ldots, \mathbf{v}_k \in S$. Otherwise S is **linearly independent**.

Theorem Vectors $\mathbf{v}_1, \ldots, \mathbf{v}_k \in V$ are linearly dependent if and only if one of them is a linear combination of the other k-1 vectors.

Examples of linear independence

• Vectors
$$\mathbf{e}_1 = (1,0,0)$$
, $\mathbf{e}_2 = (0,1,0)$, and $\mathbf{e}_3 = (0,0,1)$ in \mathbb{R}^3 .

 $x\mathbf{e}_1 + y\mathbf{e}_2 + z\mathbf{e}_3 = \mathbf{0} \implies (x, y, z) = \mathbf{0}$ $\implies x = y = z = 0$

• Matrices
$$E_{11} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$
, $E_{12} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$,
 $E_{21} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$, and $E_{22} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$.
 $aE_{11} + bE_{12} + cE_{21} + dE_{22} = 0 \implies \begin{pmatrix} a & b \\ c & d \end{pmatrix} = 0$
 $\implies a = b = c = d = 0$

Examples of linear independence

• Polynomials
$$1, x, x^2, \dots, x^n$$
.
 $a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n = 0$ identically
 $\implies a_i = 0$ for $0 \le i \le n$

• The infinite set $\{1, x, x^2, \ldots, x^n, \ldots\}$.

• Polynomials
$$p_1(x) = 1$$
, $p_2(x) = x - 1$, and $p_3(x) = (x - 1)^2$.

$$\begin{aligned} a_1 p_1(x) + a_2 p_2(x) + a_3 p_3(x) &= a_1 + a_2(x-1) + a_3(x-1)^2 = \\ &= (a_1 - a_2 + a_3) + (a_2 - 2a_3)x + a_3x^2. \\ \text{Hence} \quad a_1 p_1(x) + a_2 p_2(x) + a_3 p_3(x) = 0 \quad \text{identically} \\ &\implies a_1 - a_2 + a_3 = a_2 - 2a_3 = a_3 = 0 \\ &\implies a_1 = a_2 = a_3 = 0 \end{aligned}$$

Problem 1. Show that functions 1, e^x , and e^{-x} are linearly independent in $F(\mathbb{R})$.

Proof: Suppose that $a + be^x + ce^{-x} = 0$ for some $a, b, c \in \mathbb{R}$. We have to show that a = b = c = 0.

 $x = 0 \implies a + b + c = 0$ $x = 1 \implies a + be + ce^{-1} = 0$ $x = -1 \implies a + be^{-1} + ce = 0$ The matrix of the system is $A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & e & e^{-1} \\ 1 & e^{-1} & e \end{pmatrix}$.

 $\det A = e^{2} - e^{-2} - 2e + 2e^{-1} =$ = $(e - e^{-1})(e + e^{-1}) - 2(e - e^{-1}) =$ = $(e - e^{-1})(e + e^{-1} - 2) = (e - e^{-1})(e^{1/2} - e^{-1/2})^{2} \neq 0.$

Hence the system has a unique solution a = b = c = 0.

Problem 2. Show that functions e^x , e^{2x} , and e^{3x} are linearly independent in $C^{\infty}(\mathbb{R})$.

Suppose that $ae^{x} + be^{2x} + ce^{3x} = 0$ for all $x \in \mathbb{R}$, where a, b, c are constants. We have to show that a = b = c = 0.

Differentiate this identity twice:

$$ae^{x} + 2be^{2x} + 3ce^{3x} = 0,$$

 $ae^{x} + 4be^{2x} + 9ce^{3x} = 0.$

It follows that $A\mathbf{v} = \mathbf{0}$, where

$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 4 & 9 \end{pmatrix}$$
, $\mathbf{v} = \begin{pmatrix} ae^{x} \\ be^{2x} \\ ce^{3x} \end{pmatrix}$.

$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 4 & 9 \end{pmatrix}, \quad \mathbf{v} = \begin{pmatrix} ae^{x} \\ be^{2x} \\ ce^{3x} \end{pmatrix}.$$

To compute det *A*, subtract the 1st row from the 2nd and the 3rd rows:

$$\begin{vmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 4 & 9 \end{vmatrix} = \begin{vmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \\ 1 & 4 & 9 \end{vmatrix} = \begin{vmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \\ 0 & 3 & 8 \end{vmatrix} = \begin{vmatrix} 1 & 2 \\ 3 & 8 \end{vmatrix} = 2.$$

Since A is invertible, we obtain

$$A\mathbf{v} = \mathbf{0} \implies \mathbf{v} = \mathbf{0} \implies ae^x = be^{2x} = ce^{3x} = 0$$

 $\implies a = b = c = 0$

Problem 3. Show that functions x, e^x , and e^{-x} are linearly independent in $C(\mathbb{R})$.

Suppose that $ax + be^x + ce^{-x} = 0$ for all $x \in \mathbb{R}$, where a, b, c are constants. We have to show that a = b = c = 0. Divide both sides of the identity by e^x :

$$axe^{-x} + b + ce^{-2x} = 0.$$

The left-hand side approaches b as $x \to +\infty$. $\implies b = 0$

Now $ax + ce^{-x} = 0$ for all $x \in \mathbb{R}$. For any $x \neq 0$ divide both sides of the identity by x:

$$a+cx^{-1}e^{-x}=0.$$

The left-hand side approaches *a* as $x \to +\infty$. $\implies a = 0$ Now $ce^{-x} = 0 \implies c = 0$.