MATH 311-504
 Topics in Applied Mathematics

Lecture 2-6:
Isomorphism.
Linear independence (revisited).

Definition. A mapping $f: V_{1} \rightarrow V_{2}$ is one-to-one if it maps different elements from V_{1} to different elements in V_{2}. The map f is onto if any element $y \in V_{2}$ is represented as $f(x)$ for some $x \in V_{1}$.

If the mapping f is both one-to-one and onto, then the inverse $f^{-1}: V_{2} \rightarrow V_{1}$ is well defined.
Now let V_{1}, V_{2} be vector spaces and $f: V_{1} \rightarrow V_{2}$ be a linear mapping.
Theorem (i) The linear mapping f is one-to-one if and only if Null $f=\{\mathbf{0}\}$.
(ii) The linear mapping f is onto if $\operatorname{Im} f=V_{2}$.
(iii) If the linear mapping f is both one-to-one and onto, then the inverse mapping f^{-1} is also linear.

Examples

- $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}, f(x, y)=(x, y, x)$.

Null $f=\{\mathbf{0}\}, \quad \operatorname{Im} f$ is the plane $x=z$.
The inverse mapping $f^{-1}: \operatorname{Im} f \rightarrow \mathbb{R}^{2}$ is given by $(x, y, z) \mapsto(x, y)$.

- $g: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, g(\mathbf{x})=A \mathbf{x}$, where $A=\left(\begin{array}{ll}1 & 2 \\ 1 & 3\end{array}\right)$.
g is one-to-one and onto.
The inverse mapping is given by $g^{-1}(\mathbf{y})=A^{-1} \mathbf{y}$.
- $L: \mathcal{P} \rightarrow \mathcal{P},(L p)(x)=p(x+1)$.
L is one-to-one and onto.
The inverse is given by $\left(L^{-1} p\right)(x)=p(x-1)$.
- $M: \mathcal{P} \rightarrow \mathcal{P},(M p)(x)=x p(x)$.

Null $M=\{\mathbf{0}\}, \quad \operatorname{Im} M=\{p(x) \in \mathcal{P}: p(0)=0\}$.
The inverse mapping $M^{-1}: \operatorname{Im} M \rightarrow \mathcal{P}$ is given by $\left(M^{-1} p\right)(x)=x^{-1} p(x)$.

- $I: \mathcal{P} \rightarrow \mathcal{P}, \quad(I p)(x)=\int_{0}^{x} p(s) d s$.

Null $I=\{\mathbf{0}\}, \quad \operatorname{Im} I=\{p(x) \in \mathcal{P}: p(0)=0\}$.
The inverse mapping $I^{-1}: \operatorname{Im} I \rightarrow \mathcal{P}$ is given by $\left(I^{-1} p\right)(x)=p^{\prime}(x)$.

Isomorphism

Definition. A linear mapping $f: V_{1} \rightarrow V_{2}$ is called an isomorphism of vector spaces if it is both one-to-one and onto.
Two vector spaces V_{1} and V_{2} are called isomorphic if there exists an isomorphism $f: V_{1} \rightarrow V_{2}$.

The word "isomorphism" applies when two complex structures can be mapped onto each other, in such a way that to each part of one structure there is a corresponding part in the other structure, where "corresponding" means that the two parts play similar roles in their respective structures.

Examples of isomorphisms

- $\mathcal{M}_{2,2}(\mathbb{R})$ is isomorphic to \mathbb{R}^{4}.

Isomorphism: $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \mapsto(a, b, c, d)$.

- $\mathcal{M}_{2,3}(\mathbb{R})$ is isomorphic to $\mathcal{M}_{3,2}(\mathbb{R})$.

Isomorphism: $\left(\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3}\end{array}\right) \mapsto\left(\begin{array}{ll}a_{1} & b_{1} \\ a_{2} & b_{2} \\ a_{3} & b_{3}\end{array}\right)$.

- The plane $z=0$ in \mathbb{R}^{3} is isomorphic to \mathbb{R}^{2}. Isomorphism: $(x, y, 0) \mapsto(x, y)$.
- \mathcal{P}_{n} is isomorphic to \mathbb{R}^{n+1}.

Isomorphism: $a_{0}+a_{1} x+\cdots+a_{n} x^{n} \mapsto\left(a_{0}, a_{1}, \ldots, a_{n}\right)$.

Classification problems of linear algebra

Problem 1 Given vector spaces V_{1} and V_{2}, determine whether they are isomorphic or not.

Problem 2 Given a vector space V, determine whether V is isomorphic to \mathbb{R}^{n} for some $n \geq 1$.

Problem 3 Show that vector spaces \mathbb{R}^{n} and \mathbb{R}^{m} are not isomorphic if $m \neq n$.

Linear independence

Definition. Let V be a vector space. Vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k} \in V$ are called linearly dependent if they satisfy a relation

$$
r_{1} \mathbf{v}_{1}+r_{2} \mathbf{v}_{2}+\cdots+r_{k} \mathbf{v}_{k}=\mathbf{0}
$$

where the coefficients $r_{1}, \ldots, r_{k} \in \mathbb{R}$ are not all equal to zero. Otherwise the vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}$ are called linearly independent. That is, if

$$
r_{1} \mathbf{v}_{1}+r_{2} \mathbf{v}_{2}+\cdots+r_{k} \mathbf{v}_{k}=\mathbf{0} \Longrightarrow r_{1}=\cdots=r_{k}=0
$$

An infinite set $S \subset V$ is linearly dependent if there are some linearly dependent vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k} \in S$. Otherwise S is linearly independent.
Theorem Vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k} \in V$ are linearly dependent if and only if one of them is a linear combination of the other $k-1$ vectors.

Examples of linear independence

- Vectors $\mathbf{e}_{1}=(1,0,0), \mathbf{e}_{2}=(0,1,0)$, and $\mathbf{e}_{3}=(0,0,1)$ in \mathbb{R}^{3}.

$$
\begin{aligned}
& x \mathbf{e}_{1}+y \mathbf{e}_{2}+z \mathbf{e}_{3}=\mathbf{0} \Longrightarrow(x, y, z)=\mathbf{0} \\
& \Longrightarrow x=y=z=0
\end{aligned}
$$

- Matrices $E_{11}=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right), E_{12}=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$,
$E_{21}=\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)$, and $E_{22}=\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)$.
$a E_{11}+b E_{12}+c E_{21}+d E_{22}=O \Longrightarrow\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)=0$ $\Longrightarrow a=b=c=d=0$

Examples of linear independence

- Polynomials $1, x, x^{2}, \ldots, x^{n}$.
$a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}=0$ identically
$\Longrightarrow a_{i}=0$ for $0 \leq i \leq n$
- The infinite set $\left\{1, x, x^{2}, \ldots, x^{n}, \ldots\right\}$.
- Polynomials $p_{1}(x)=1, p_{2}(x)=x-1$, and $p_{3}(x)=(x-1)^{2}$.
$a_{1} p_{1}(x)+a_{2} p_{2}(x)+a_{3} p_{3}(x)=a_{1}+a_{2}(x-1)+a_{3}(x-1)^{2}=$ $=\left(a_{1}-a_{2}+a_{3}\right)+\left(a_{2}-2 a_{3}\right) x+a_{3} x^{2}$.
Hence $a_{1} p_{1}(x)+a_{2} p_{2}(x)+a_{3} p_{3}(x)=0$ identically
$\Longrightarrow a_{1}-a_{2}+a_{3}=a_{2}-2 a_{3}=a_{3}=0$
$\Longrightarrow \quad a_{1}=a_{2}=a_{3}=0$

Problem 1. Show that functions $1, e^{x}$, and e^{-x} are linearly independent in $F(\mathbb{R})$.
Proof: Suppose that $a+b e^{x}+c e^{-x}=0$ for some $a, b, c \in \mathbb{R}$. We have to show that $a=b=c=0$.
$x=0 \Longrightarrow a+b+c=0$
$x=1 \Longrightarrow a+b e+c e^{-1}=0$
$x=-1 \Longrightarrow a+b e^{-1}+c e=0$
The matrix of the system is $A=\left(\begin{array}{lll}1 & 1 & 1 \\ 1 & e & e^{-1} \\ 1 & e^{-1} & e\end{array}\right)$.
$\operatorname{det} A=e^{2}-e^{-2}-2 e+2 e^{-1}=$
$=\left(e-e^{-1}\right)\left(e+e^{-1}\right)-2\left(e-e^{-1}\right)=$
$=\left(e-e^{-1}\right)\left(e+e^{-1}-2\right)=\left(e-e^{-1}\right)\left(e^{1 / 2}-e^{-1 / 2}\right)^{2} \neq 0$.
Hence the system has a unique solution $a=b=c=0$.

Problem 2. Show that functions $e^{x}, e^{2 x}$, and $e^{3 x}$ are linearly independent in $C^{\infty}(\mathbb{R})$.

Suppose that $a e^{x}+b e^{2 x}+c e^{3 x}=0$ for all $x \in \mathbb{R}$, where a, b, c are constants. We have to show that $a=b=c=0$.
Differentiate this identity twice:

$$
\begin{aligned}
& a e^{x}+2 b e^{2 x}+3 c e^{3 x}=0 \\
& a e^{x}+4 b e^{2 x}+9 c e^{3 x}=0
\end{aligned}
$$

It follows that $A \mathbf{v}=\mathbf{0}$, where
$A=\left(\begin{array}{lll}1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 4 & 9\end{array}\right), \quad \mathbf{v}=\left(\begin{array}{c}a e^{x} \\ b e^{2 x} \\ c e^{3 x}\end{array}\right)$.
$A=\left(\begin{array}{lll}1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 4 & 9\end{array}\right), \quad \mathbf{v}=\left(\begin{array}{c}a e^{x} \\ b e^{2 x} \\ c e^{3 x}\end{array}\right)$.
To compute $\operatorname{det} A$, subtract the 1 st row from the 2nd and the 3rd rows:

$$
\left|\begin{array}{lll}
1 & 1 & 1 \\
1 & 2 & 3 \\
1 & 4 & 9
\end{array}\right|=\left|\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 2 \\
1 & 4 & 9
\end{array}\right|=\left|\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 2 \\
0 & 3 & 8
\end{array}\right|=\left|\begin{array}{ll}
1 & 2 \\
3 & 8
\end{array}\right|=2 .
$$

Since A is invertible, we obtain
$A \mathbf{v}=\mathbf{0} \Longrightarrow \mathbf{v}=\mathbf{0} \Longrightarrow a e^{x}=b e^{2 x}=c e^{3 x}=0$
$\Longrightarrow a=b=c=0$

Problem 3. Show that functions x, e^{x}, and e^{-x}

 are linearly independent in $C(\mathbb{R})$.Suppose that $a x+b e^{x}+c e^{-x}=0$ for all $x \in \mathbb{R}$, where a, b, c are constants. We have to show that $a=b=c=0$.
Divide both sides of the identity by e^{x} :

$$
a x e^{-x}+b+c e^{-2 x}=0 .
$$

The left-hand side approaches b as $x \rightarrow+\infty$.

$$
\Longrightarrow b=0
$$

Now $a x+c e^{-x}=0$ for all $x \in \mathbb{R}$. For any $x \neq 0$ divide both sides of the identity by x :

$$
a+c x^{-1} e^{-x}=0 .
$$

The left-hand side approaches a as $x \rightarrow+\infty . \quad \Longrightarrow a=0$ Now $c e^{-x}=0 \Longrightarrow c=0$.

